Objective:Colorectal cancer(CRC)is one of the most lethal and prevalent malignancies world-wide.Currently,surgery,radiotherapy and chemotherapy are clinically applied as common approaches for CRC patients.Cisplatin is...Objective:Colorectal cancer(CRC)is one of the most lethal and prevalent malignancies world-wide.Currently,surgery,radiotherapy and chemotherapy are clinically applied as common approaches for CRC patients.Cisplatin is one of the most frequently used chemotherapy drugs for diverse cancers.Although chemotherapeutic strategies have improved the prognosis and survival of cancer patients,development of cisplatin resistance has led to cancer recurrence.Curcumin,isolated from turmeric,has been used as an effective anti-cancer agent.However,the molecular mechanisms for curcumin-mediated cisplatin sensitivity of CRC have not been elucidated.展开更多
Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotio...An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotion in channel current, transconductance, current gain cut-off frequency, and maximum oscillation frequency of In P-based HEMTs. Moreover, direct current(DC) and radio frequency(RF) characteristic properties and their reduction rates have been compared in detail between single Si-doped and double Si-doped structures after 75-keV proton irradiation with dose of 5× 10^(11) cm^(-2),1× 10^(12) cm^(-2), and 5× 10^(12) cm^(-2). DC and RF characteristics for both structures are observed to decrease gradually as irradiation dose rises, which particularly show a drastic drop at dose of 5× 10^(12) cm^(-2). Besides, characteristic degradation degree of the double Si-doped structure is significantly lower than that of the single Si-doped structure, especially at large proton irradiation dose. The enhancement of proton radiation tolerance by the insertion of another Si-doped plane could be accounted for the tremendously increased native carriers, which are bound to weaken substantially the carrier removal effect by irradiation-induced defects.展开更多
We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to...We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.展开更多
Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The chann...Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The channel of the new device is In_(0.7)Ga_(0.3)As,and the gate length is 100 nm.A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained.The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz.In addition,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.展开更多
The T-gate stem height of In Al As/In Ga As In P-based high electron mobility transistor(HEMT) is increased from165 nm to 250 nm. The influences of increasing the gate stem height on the direct current(DC) and radio f...The T-gate stem height of In Al As/In Ga As In P-based high electron mobility transistor(HEMT) is increased from165 nm to 250 nm. The influences of increasing the gate stem height on the direct current(DC) and radio frequency(RF)performances of device are investigated. A 120-nm-long gate, 250-nm-high gate stem device exhibits a higher threshold voltage(Vth) of 60 m V than a 120-nm-long gate devices with a short gate stem, caused by more Pt distributions on the gate foot edges of the high Ti/Pt/Au gate. The Pt distribution in Schottky contact metal is found to increase with the gate stem height or the gate length increasing, and thus enhancing the Schottky barrier height and expanding the gate length,which can be due to the increased internal tensile stress of Pt. The more Pt distributions for the high gate stem device also lead to more obvious Pt sinking, which reduces the distance between the gate and the In Ga As channel so that the transconductance(gm) of the high gate stem device is 70 m S/mm larger than that of the short stem device. As for the RF performances,the gate extrinsic parasitic capacitance decreases and the intrinsic transconductance increases after the gate stem height has been increased, so the RF performances of device are obviously improved. The high gate stem device yields a maximum ft of 270 GHz and fmax of 460 GHz, while the short gate stem device has a maximum ft of 240 GHz and the fmax of 370 GHz.展开更多
The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect ene...The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.展开更多
This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased mod...This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased modulation doping efficiency and carrier confinement.Moreover,the direct current(DC)and radio frequency(RF)characteristics and their reliability between the single channel structure and the composite channel structure after 75-ke V proton irradiation are compared in detail.The results show that the composite channel structure has excellent radiation tolerance.Mechanism analysis demonstrates that the composite channel structure weakens the carrier removal effect.This phenomenon can account for the increase of native carrier and the decrease of defect capture rate.展开更多
The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ...The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.展开更多
A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in thi...A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.展开更多
A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gat...A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gate recess and T-shaped gate by electron beam lithography.DC and RF measurement was conducted.With the gate offset varying from drain side to source side,the maximum drain current(I_(ds,max))and transconductance(g_(m,max))increased.In the meantime,fTdecreased while f;increased,and the highest fmax of 1096 GHz was obtained.It can be explained by the increase of gate-source capacitance and the decrease of gate-drain capacitance and source resistance.Output conductance was also suppressed by gate offset toward source side.This provides simple and flexible device parameter selection for HEMTs of different usages.展开更多
A double-recessed offset gate process technology for In P-based high electron mobility transistors(HEMTs)has been developed in this paper.Single-recessed and double-recessed HEMTs with different gate offsets have been...A double-recessed offset gate process technology for In P-based high electron mobility transistors(HEMTs)has been developed in this paper.Single-recessed and double-recessed HEMTs with different gate offsets have been fabricated and characterized.Compared with single-recessed devices,the maximum drain-source current(I_(D,max))and maximum extrinsic transconductance(g_(m,max))of double-recessed devices decreased due to the increase in series resistances.However,in terms of RF performance,double-recessed HEMTs achieved higher maximum oscillation frequency(f_(MAX))by reducing drain output conductance(g_(m,max))and drain to gate capacitance(C_gd).In addition,further improvement of fMAXwas observed by adjusting the gate offset of double-recessed devices.This can be explained by suppressing the ratio of C_(gd)to source to gate capacitance(C_gd)by extending drain-side recess length(Lrd).Compared with the single-recessed HEMTs,the f;of double-recessed offset gate HEMTs was increased by about 20%.展开更多
With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is pa...With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.展开更多
We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are ext...We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are extracted by means of 3D EM simulation.The simulations with a new excitation scheme are closer to the actual on-wafer measurement conditions.Appropriate simulation settings are calibrated by comparing measurement and simulation of OPEN and SHORT structures.A simplerπ-type topology is proposed for the intrinsic model,in which the base-collector resistance Rμ,output resistance Rce are deleted,and a capacitance Cce is introduced to characterize the capacitive parasitic caused by the collector finger and emitter ground bar.The intrinsic parameters are all extracted by exact equations that are derived from rigorous mathematics.The method is characterized by its ease of implementation and the explicit physical meaning of extraction procedure.Experimental validations are performed at four biases for three InGaAs/InP HBT devices with 0.8×7μm,0.8×10μm and 0.8×15μm emitter,and quite good fitting results are obtained in the range of 0.1-50 GHz.展开更多
Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga A...Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga As Bi films were characterized by Van der Pauw-Hall measurement and transmission line method(TLM)with and without rapid thermal annealing(RTA).It was found that the specific contact resistance decreases gradually with the increase of carrier concentration.The electron concentration exhibits a sharp increase,and the specific contact resistance shows a noticeable reduction after RTA.With RTA,the In Ga As Bi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6×10^(21) cm^(-3) and achieved an ultra-low specific contact resistance of 1×10^(-8)Ω·cm^(2),revealing that contact resistance depends greatly on the tunneling effect.展开更多
文摘Objective:Colorectal cancer(CRC)is one of the most lethal and prevalent malignancies world-wide.Currently,surgery,radiotherapy and chemotherapy are clinically applied as common approaches for CRC patients.Cisplatin is one of the most frequently used chemotherapy drugs for diverse cancers.Although chemotherapeutic strategies have improved the prognosis and survival of cancer patients,development of cisplatin resistance has led to cancer recurrence.Curcumin,isolated from turmeric,has been used as an effective anti-cancer agent.However,the molecular mechanisms for curcumin-mediated cisplatin sensitivity of CRC have not been elucidated.
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Promotion Funding for Excellent Young Backbone Teacher of Henan Province,China(Grant No.2019GGJS017)。
文摘An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotion in channel current, transconductance, current gain cut-off frequency, and maximum oscillation frequency of In P-based HEMTs. Moreover, direct current(DC) and radio frequency(RF) characteristic properties and their reduction rates have been compared in detail between single Si-doped and double Si-doped structures after 75-keV proton irradiation with dose of 5× 10^(11) cm^(-2),1× 10^(12) cm^(-2), and 5× 10^(12) cm^(-2). DC and RF characteristics for both structures are observed to decrease gradually as irradiation dose rises, which particularly show a drastic drop at dose of 5× 10^(12) cm^(-2). Besides, characteristic degradation degree of the double Si-doped structure is significantly lower than that of the single Si-doped structure, especially at large proton irradiation dose. The enhancement of proton radiation tolerance by the insertion of another Si-doped plane could be accounted for the tremendously increased native carriers, which are bound to weaken substantially the carrier removal effect by irradiation-induced defects.
基金the National Natural Science Foundation of China(Grant No.61434006).
文摘We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.
基金the National Natural Science Foundation of China(Grant No.61434006).
文摘Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The channel of the new device is In_(0.7)Ga_(0.3)As,and the gate length is 100 nm.A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained.The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz.In addition,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.
基金Project supported by the National Natural Science Foundation of China(Grant No.61434006)。
文摘The T-gate stem height of In Al As/In Ga As In P-based high electron mobility transistor(HEMT) is increased from165 nm to 250 nm. The influences of increasing the gate stem height on the direct current(DC) and radio frequency(RF)performances of device are investigated. A 120-nm-long gate, 250-nm-high gate stem device exhibits a higher threshold voltage(Vth) of 60 m V than a 120-nm-long gate devices with a short gate stem, caused by more Pt distributions on the gate foot edges of the high Ti/Pt/Au gate. The Pt distribution in Schottky contact metal is found to increase with the gate stem height or the gate length increasing, and thus enhancing the Schottky barrier height and expanding the gate length,which can be due to the increased internal tensile stress of Pt. The more Pt distributions for the high gate stem device also lead to more obvious Pt sinking, which reduces the distance between the gate and the In Ga As channel so that the transconductance(gm) of the high gate stem device is 70 m S/mm larger than that of the short stem device. As for the RF performances,the gate extrinsic parasitic capacitance decreases and the intrinsic transconductance increases after the gate stem height has been increased, so the RF performances of device are obviously improved. The high gate stem device yields a maximum ft of 270 GHz and fmax of 460 GHz, while the short gate stem device has a maximum ft of 240 GHz and the fmax of 370 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Development Fund for Outstanding Young Teachers in Zhengzhou University of China(Grant No.1521317004)the Doctoral Student Overseas Study Program of Zhengzhou University,China
文摘The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.
基金the National Natural Science Foundation of China(Grant No.11775191)the Natural Science Foundation of Henan Province,China(Grant No.202300410379)+2 种基金the Promotion Funding for Excellent Young Backbone Teacher of Henan Province,China(Grant No.2019GGJS017)Key Technologies Research and Development Program of Henan Province,China(Grant No.202102210321)the Promotion Project for Physics Discipline in Zhengzhou University,China(Grant No.2018WLTJ01)。
文摘This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased modulation doping efficiency and carrier confinement.Moreover,the direct current(DC)and radio frequency(RF)characteristics and their reliability between the single channel structure and the composite channel structure after 75-ke V proton irradiation are compared in detail.The results show that the composite channel structure has excellent radiation tolerance.Mechanism analysis demonstrates that the composite channel structure weakens the carrier removal effect.This phenomenon can account for the increase of native carrier and the decrease of defect capture rate.
文摘The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.
基金Project supported by the National Natural Science Foundation of China (Grant No.61871072)。
文摘A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.
基金Project supported by the National Nature Science Foundation of China(Grant No.61434006)。
文摘A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gate recess and T-shaped gate by electron beam lithography.DC and RF measurement was conducted.With the gate offset varying from drain side to source side,the maximum drain current(I_(ds,max))and transconductance(g_(m,max))increased.In the meantime,fTdecreased while f;increased,and the highest fmax of 1096 GHz was obtained.It can be explained by the increase of gate-source capacitance and the decrease of gate-drain capacitance and source resistance.Output conductance was also suppressed by gate offset toward source side.This provides simple and flexible device parameter selection for HEMTs of different usages.
基金supported by the National Natural Science Foundation of China(Grant Nos.61874036,62174041,and61434006)the Open Project of State Key Laboratory of ASIC and System(Grant No.KVH1233021)+3 种基金the Opening Foundation of the State Key Laboratory of Advanced Materials and Electronic Components(Grant No.FHR-JS-201909007)the Guangxi Innovation Research Team Project(Grant Nos.2018GXNSFGA281004 and 2018GXNSFBA281152)the Guangxi Innovation Driven Development Special Fund Project(Grant No.AA19254015)the Guangxi Key Laboratory of Precision Navigation Technology and Application Project(Grant Nos.DH201906,DH202020,and DH202001)。
文摘A double-recessed offset gate process technology for In P-based high electron mobility transistors(HEMTs)has been developed in this paper.Single-recessed and double-recessed HEMTs with different gate offsets have been fabricated and characterized.Compared with single-recessed devices,the maximum drain-source current(I_(D,max))and maximum extrinsic transconductance(g_(m,max))of double-recessed devices decreased due to the increase in series resistances.However,in terms of RF performance,double-recessed HEMTs achieved higher maximum oscillation frequency(f_(MAX))by reducing drain output conductance(g_(m,max))and drain to gate capacitance(C_gd).In addition,further improvement of fMAXwas observed by adjusting the gate offset of double-recessed devices.This can be explained by suppressing the ratio of C_(gd)to source to gate capacitance(C_gd)by extending drain-side recess length(Lrd).Compared with the single-recessed HEMTs,the f;of double-recessed offset gate HEMTs was increased by about 20%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61434006 and 61704189)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.
文摘We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are extracted by means of 3D EM simulation.The simulations with a new excitation scheme are closer to the actual on-wafer measurement conditions.Appropriate simulation settings are calibrated by comparing measurement and simulation of OPEN and SHORT structures.A simplerπ-type topology is proposed for the intrinsic model,in which the base-collector resistance Rμ,output resistance Rce are deleted,and a capacitance Cce is introduced to characterize the capacitive parasitic caused by the collector finger and emitter ground bar.The intrinsic parameters are all extracted by exact equations that are derived from rigorous mathematics.The method is characterized by its ease of implementation and the explicit physical meaning of extraction procedure.Experimental validations are performed at four biases for three InGaAs/InP HBT devices with 0.8×7μm,0.8×10μm and 0.8×15μm emitter,and quite good fitting results are obtained in the range of 0.1-50 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705277 and 61434006)the Project of Hubei University of Arts and Science(Grant No.XK2019053)。
文摘Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga As Bi films were characterized by Van der Pauw-Hall measurement and transmission line method(TLM)with and without rapid thermal annealing(RTA).It was found that the specific contact resistance decreases gradually with the increase of carrier concentration.The electron concentration exhibits a sharp increase,and the specific contact resistance shows a noticeable reduction after RTA.With RTA,the In Ga As Bi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6×10^(21) cm^(-3) and achieved an ultra-low specific contact resistance of 1×10^(-8)Ω·cm^(2),revealing that contact resistance depends greatly on the tunneling effect.