We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Coope...Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions.The proximity effects between transition metal nitrides(TMNs)are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces.We fabricated heterostructures comprising SC titanium nitride(TiN)and FM iron nitride(Fe_(3)N)with precise chemical compositions and atomically well-defined interfaces.The magnetoresistance of Fe_(3)N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations.Moreover,the superconducting transition temperatureT_(C) and critical field of TiN experience notable suppression when proximity to Fe_(3)N.We observe the intriguing competition of interfacial spin orientations near𝑇T_(C)(∼1.25 K).These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets,but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.展开更多
AIM: To evaluate the feasibility, safety and efficacy of ultrasound-guided microwave (MW) ablation for abdominal wall metastatic tumors. METHODS: From August 2007 to December 2010, a total of 11 patients with 23 abdom...AIM: To evaluate the feasibility, safety and efficacy of ultrasound-guided microwave (MW) ablation for abdominal wall metastatic tumors. METHODS: From August 2007 to December 2010, a total of 11 patients with 23 abdominal wall nodules (diameter 2.59 cm ± 1.11 cm, range 1.3 cm to 5.0 cm) were treated with MW ablation. One antenna was inserted into the center of tumors less than 1.7 cm, and multiple antennae were inserted simultaneously into tumors 1.7 cm or larger. A 21 gauge thermocouple was inserted near important organs which required protection (such as bowel or gallbladder) for real-time temperature monitoring during MW ablation. Treatment outcome was observed by contrast-enhanced ultrasound and magnetic resonance imaging (MRI) [or computed tomography (CT)] during follow-up. RESULTS: MW ablation was well tolerated by all patients. Six patients with 11 nodules had 1 thermocouple inserted near important organs for real-time temperature monitoring and the maximum temperature was 56 ℃. Major complications included mild pain (54.5%), post-ablation fever (100%) and abdominal wall edema (25%). All 23 tumors (100%) in this group were completely ablated, and no residual tumor or local recurrence was observed at a median follow-up of 13 mo (range 1 to 32 mo). The ablation zone was well defined on contrast-enhanced imaging (contrast-enhanced CT, MRI and/or contrast-enhanced ultrasound) and gradually shrank with time. CONCLUSION: Ultrasound-guided MW ablation may be a feasible, safe and effective treatment for abdominal wall metastatic tumors in selected patients.展开更多
With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrate...With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.展开更多
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
基金supported by the National Key Research and Development Program of China(Grant Nos.2020YFA0309100 and 2019YFA0308500)the National Natural Science Foundation of China(Grant Nos.U22A20263,52250308,and 11974390)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)(E.J.G.)Special Research Assistant(Q.J.),the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33030200)(K.J.)the China Postdoctoral Science Foundation(Grant No.2022M723353)the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology(Grant No.HTCSNS-DG-CD-0080/2021).
文摘Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions.The proximity effects between transition metal nitrides(TMNs)are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces.We fabricated heterostructures comprising SC titanium nitride(TiN)and FM iron nitride(Fe_(3)N)with precise chemical compositions and atomically well-defined interfaces.The magnetoresistance of Fe_(3)N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations.Moreover,the superconducting transition temperatureT_(C) and critical field of TiN experience notable suppression when proximity to Fe_(3)N.We observe the intriguing competition of interfacial spin orientations near𝑇T_(C)(∼1.25 K).These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets,but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.
文摘AIM: To evaluate the feasibility, safety and efficacy of ultrasound-guided microwave (MW) ablation for abdominal wall metastatic tumors. METHODS: From August 2007 to December 2010, a total of 11 patients with 23 abdominal wall nodules (diameter 2.59 cm ± 1.11 cm, range 1.3 cm to 5.0 cm) were treated with MW ablation. One antenna was inserted into the center of tumors less than 1.7 cm, and multiple antennae were inserted simultaneously into tumors 1.7 cm or larger. A 21 gauge thermocouple was inserted near important organs which required protection (such as bowel or gallbladder) for real-time temperature monitoring during MW ablation. Treatment outcome was observed by contrast-enhanced ultrasound and magnetic resonance imaging (MRI) [or computed tomography (CT)] during follow-up. RESULTS: MW ablation was well tolerated by all patients. Six patients with 11 nodules had 1 thermocouple inserted near important organs for real-time temperature monitoring and the maximum temperature was 56 ℃. Major complications included mild pain (54.5%), post-ablation fever (100%) and abdominal wall edema (25%). All 23 tumors (100%) in this group were completely ablated, and no residual tumor or local recurrence was observed at a median follow-up of 13 mo (range 1 to 32 mo). The ablation zone was well defined on contrast-enhanced imaging (contrast-enhanced CT, MRI and/or contrast-enhanced ultrasound) and gradually shrank with time. CONCLUSION: Ultrasound-guided MW ablation may be a feasible, safe and effective treatment for abdominal wall metastatic tumors in selected patients.
基金supported by Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-SLH0010)Beijing Natural Science Foundation(Grant No.JQ21002)Beijing Council of Science and Technology(Grant Nos.Z201100008420006 and Z211100004021012)
文摘With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.