期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Methods for simultaneously evaluating reserve and permeability of undersaturated coalbed methane reservoirs using production data during the dewatering stage 被引量:4
1
作者 Jun-Tai Shi Jia-Yi Wu +3 位作者 Zheng Sun zhi-hua xiao Cheng Liu Kamy Sepehrnoori 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1067-1086,共20页
In this work,a flowing material balance equation(FMBE) is established for under saturated coalbed methane(CBM) reservoirs,which considers immobile free gas expansion effect at the dewatering stage.Based on the establi... In this work,a flowing material balance equation(FMBE) is established for under saturated coalbed methane(CBM) reservoirs,which considers immobile free gas expansion effect at the dewatering stage.Based on the established FMBE,five straight-line methods are proposed to determine the control area,initial water reserve,initial free gas reserve,initial adsorbed gas reserve,original gas in place,as well as permeability at the same time.Subsequently,the proposed FMBE methods for undersaturated CBM reservoirs are validated against a reservoir simulation software with and without considering free gas expansion.Finally,the proposed methods are applied in a field case when considering free gas expansion effect.Validation cases show that the straight-line relationships for the proposed five FMBE methods are excellent,and good agreements are obtained among the actual reserves and permeabilities and those evaluated by the proposed five FMBE methods,indicating the proposed five FMBE methods are effective and rational for CBM reservoirs.Results show that a small amount of free gas will result in a great deviation in reserve evaluation;hence,the immobile free gas expansion effect should be considered when establishing the material balance equation of undersaturated CBM reservoirs at the dewatering stage. 展开更多
关键词 Coalbed methane OGIP Permeability evaluation Flowing material balance equation Gas expansion
下载PDF
Impact of formation water on the generation of H2S in condensate reservoirs: a case study from the deep Ordovician in the Tazhong Uplift of the Tarim Basin, NW China 被引量:2
2
作者 Jin Su Yu Wang +9 位作者 xiao-Mei Wang Kun He Hai-Jun Yang Hui-Tong Wang Hua-Jian Wang Bin Zhang Ling Huang Na Weng Li-Na Bi zhi-hua xiao 《Petroleum Science》 SCIE CAS CSCD 2017年第3期507-519,共13页
A number of condensate reservoirs with high concentrations of H2S have been discovered in the deep dolomite reservoirs of the lower Ordovician Yingshan Formation(O1y) in the Tazhong Uplift, where the formation water... A number of condensate reservoirs with high concentrations of H2S have been discovered in the deep dolomite reservoirs of the lower Ordovician Yingshan Formation(O1y) in the Tazhong Uplift, where the formation water has a high p H value. In the O1y reservoir, the concentrations of Mg^2+ and SO4^2-in the formation water are higher than those in the upper Ordovician formation.The concentration of H2 S in the condensate reservoirs and the concentration of Mg^2+in the formation water correlate well in the O1y reservoirs of the Tazhong Uplift, which indicates a presumed thermochemical sulfate reduction(TSR) origin of H2S according to the oxidation theory of contact ion-pairs(CIPs). Besides, the p H values of the formation water are positively correlated with the concentration of H2S in the condensate reservoirs, which may indicate that high p H might be another factor to promote and maintain TSR. Oil–source correlation of biomarkers in the sulfuretted condensates indicates the Cambrian source rocks could be the origin of condensates. The formation water in the condensate reservoirs of O1y is similar to that in the Cambrian; therefore, the TSR of sulfate-CIPs likelyoccurred in the Cambrian. High H2S-bearing condensates are mainly located near the No. 1 Fault and NE-SW strikeslip faults, which are the major migration pathway of deep fluids in the Tazhong Uplift. The redox between sulfateCIPs and hydrocarbons is the generation mechanism of H2S in the deep dolomite condensate reservoirs of the Tazhong Uplift. This finding should be helpful to predict the fluid properties of deep dolomite reservoirs. 展开更多
关键词 Formation water Sulfate-CIPs - TSR -Condensates Dolomite reservoir Tarim basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部