A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) an...Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.展开更多
The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic setbased reliability problem and analyzing the reliabi...The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness, the fatigue reliability with hybrid parameters can be obtained. The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters. A comparison among the presented hybrid model, non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples. The results show that the presented hybrid model, which can ensure structural security, is effective and practical.展开更多
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102120023)the Aeronautical Science Foundation of China (2012ZA51010)+1 种基金the National Natural Science Foundation of China (11002013)Defense Industrial Technology Development Program (A2120110001 and B2120110011)
文摘Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
基金supported by the National Natural Science Foundation of China (90816024, 10872017 and 10876100)the 111 Project (B07009)the Innovation Foundation of Beihang University for PhD Graduates
文摘The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness, the fatigue reliability with hybrid parameters can be obtained. The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters. A comparison among the presented hybrid model, non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples. The results show that the presented hybrid model, which can ensure structural security, is effective and practical.