期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins 被引量:6
1
作者 zhi-rui liu Pin Ye Yong-Hua Ji 《Protein & Cell》 SCIE CSCD 2011年第6期437-444,共8页
Diverse subtypes of voltage-gated sodium channels(VGSCs)have been found throughout tissues of the brain,muscles and the heart.Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch(BmK)act a... Diverse subtypes of voltage-gated sodium channels(VGSCs)have been found throughout tissues of the brain,muscles and the heart.Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch(BmK)act as sodium channel-specific modulators and have therefore been widely used to study VGSCs.α-type neurotoxins,named BmK I,BmKαIV and BmK abT,bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs.In contrast,β-type neurotoxins,named BmK AS,BmK AS-1,BmK IT and BmK IT2,occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels.Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs,however,indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simpleα-type and β-type neurotoxin distinction.Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region-and/or speciesspecific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs.In this review,we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3-or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species. 展开更多
关键词 voltage-gated sodium channel receptor sites scorpion neurotoxins
原文传递
Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Na_v1.3 被引量:5
2
作者 zhi-rui liu Jie Tao +4 位作者 Bang-Qian Dong Gang Ding Zhi-Jun Cheng Hui-Qiong He Yong-Hua Ji 《Neuroscience Bulletin》 SCIE CAS CSCD 2012年第3期209-221,共13页
Objective In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes. Methods... Objective In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes. Methods Two-electrode voltage clamp was used to record the whole-cell sodium current. Results The peak currents of Nav1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Nav1.3 at all concentrations. Conclusion This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Nav1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Nav1.3-targeted pathology. 展开更多
关键词 VGSC subtype Nav1.3 VGSC site 4-specific modulator BmKAS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部