3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim...6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.展开更多
To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established b...To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.展开更多
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she...Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.展开更多
The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morpholo...The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
Objective:To investigate the relationship between the levels of plasma adrenaline and norepinephrine and gene polymorphism of β1 adrenergic receptor G1165 C in children with enterovirus 71(EV71) infection in hand foo...Objective:To investigate the relationship between the levels of plasma adrenaline and norepinephrine and gene polymorphism of β1 adrenergic receptor G1165 C in children with enterovirus 71(EV71) infection in hand foot and mouth disease(HFMD). Methods:The polymerase chain reaction(PCR) was used to detect the expression of gene polymorphism of β1 adrenergic receptor G1165 C in vitro. The levels of plasma adrenaline and norepinephrine were measured by enzyme-linked immunosorbent assay(ELISA). Results:The plasma norepinephrine level of severe group was significantly higher than the mild group in children with EV71 infection in HFMD(P<0.05); however,the levels of plasma adrenalinein in two groups had no statistical differences(P>0.05); There was no significant difference in the distribution of β1 adrenergic receptor G1165 C genotype and allele between EV71 infection group and healthy control group(P> 0.05). Further analysis of EV71 infection group by dividing it into mild and severe groups showed that there was no significant difference in the distribution of genotype and allele between these two groups as well(P> 0.05). There was no significant difference in the levels of epinephrine and norepinephrine in different genotypes of EV71 infection group(P> 0.05),and in the levels of plasma epinephrine and norepinephrine in the mild and severe groups(P> 0.05). Conclusions:As the disease gets worse,the plasma norepinephrine level has a rising trend in children with EV71 infection in HFMD,which is an important indicator to evaluate the progress of the disease. However,the gene polymorphism of eptor G1165 C have no significant correlation,not only with the susceptibility and severit β1 adrenergic recy of EV71 infection in hand,foot and mouth disease,but also with the levels of catecholamine.展开更多
pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hyd...pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.展开更多
A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,whi...A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金Projects(2019JJ70077,2019JJ50510) supported by the National Science Foundation of Hunan Province,ChinaProject(31665004) supported by Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,ChinaProjects(18B552,18B285) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.
基金Project(U1664252) supported by the National Natural Science Foundation of ChinaProjects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.
基金Projects(U1664252,51605234)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101700)supported by the National Key Research and Development Program of ChinaProject(31665004)supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.
基金Project(U1664252)supported by the National Natural Science Foundation of China
文摘The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
基金supported by the Research Projects of Hainan Province Health Planning Industry(grant numbers:2012ZD-03)
文摘Objective:To investigate the relationship between the levels of plasma adrenaline and norepinephrine and gene polymorphism of β1 adrenergic receptor G1165 C in children with enterovirus 71(EV71) infection in hand foot and mouth disease(HFMD). Methods:The polymerase chain reaction(PCR) was used to detect the expression of gene polymorphism of β1 adrenergic receptor G1165 C in vitro. The levels of plasma adrenaline and norepinephrine were measured by enzyme-linked immunosorbent assay(ELISA). Results:The plasma norepinephrine level of severe group was significantly higher than the mild group in children with EV71 infection in HFMD(P<0.05); however,the levels of plasma adrenalinein in two groups had no statistical differences(P>0.05); There was no significant difference in the distribution of β1 adrenergic receptor G1165 C genotype and allele between EV71 infection group and healthy control group(P> 0.05). Further analysis of EV71 infection group by dividing it into mild and severe groups showed that there was no significant difference in the distribution of genotype and allele between these two groups as well(P> 0.05). There was no significant difference in the levels of epinephrine and norepinephrine in different genotypes of EV71 infection group(P> 0.05),and in the levels of plasma epinephrine and norepinephrine in the mild and severe groups(P> 0.05). Conclusions:As the disease gets worse,the plasma norepinephrine level has a rising trend in children with EV71 infection in HFMD,which is an important indicator to evaluate the progress of the disease. However,the gene polymorphism of eptor G1165 C have no significant correlation,not only with the susceptibility and severit β1 adrenergic recy of EV71 infection in hand,foot and mouth disease,but also with the levels of catecholamine.
基金financially supported by the National Natural Science Foundation of China(No.21204002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20111102120050)+1 种基金Program for New Century Excellent Talents in Universities(2010)the Fundamental Research Funds for the Central Universities
文摘pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.
基金Project supported by the National Natural Science Foundation of China(Nos.61331019 and 61490691) the China Scholarship Council Postgraduate Scholarship Program(2014) the National Grid(UK)
文摘A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.