Caspase-8 plays an important role in the mediation of inflammation and the effect of its role in subarachnoid hemorrhage remains elusive.The nucleotide-binding oligomerization domain-like receptor protein 3 inflammaso...Caspase-8 plays an important role in the mediation of inflammation and the effect of its role in subarachnoid hemorrhage remains elusive.The nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome has been postulated to mediate inflammation during SAH.The aim of the present study was to investigate the effects of caspase-8 inhibition on SAH injury and further elucidate the molecular mechanisms.In this study,a subarachnoid hemorrhage model was established by endovascular perforation process in adult male Sprague-Dawley rats.Z-IETD-FMK(0.5,1,2 mg/kg;an inhibitor of caspase-8)was delivered via intravenous(tail vein)injection immediately after subarachnoid hemorrhage.After 12 hours of subarachnoid hemorrhage,western blot assay showed that the expression of cleaved caspase-8 was significantly increased at 12 hours,peaked at 24 hours,and then decreased at 72 hours after subarachnoid hemorrhage.Immunofluorescence staining demonstrated that caspase-8 was expressed in microglia after subarachnoid hemorrhage.Z-IETDFMK significantly improved neurological deficits and reduced brain water content 24 hours after subarachnoid hemorrhage.The Morris water maze and rotarod test confirmed that Z-IETD-FMK significantly improved spatial learning and memory abilities and motor coordination at 21–27 days after subarachnoid hemorrhage.Furthermore,inhibition of caspase-8 activation reduced the expression of pyrin domain-containing 3,caspase-1,and interleukin-1βafter subarachnoid hemorrhage.In conclusion,our findings suggest that caspase-8 inhibition alleviates subarachnoid hemorrhage-induced brain injuries by suppressing inflammation.The study was approved by the Institutional Animal Ethics Committee of the First Affiliated Hospital,School of Medicine,Zhejiang University,China(approval No.2016-193)on February 25,2016.展开更多
Swept volume solid modeling has been applied to many areas such as NC machining simulation and verification, robot workspace analysis, collision detection, and CAD. But self-intersections continue to be a challenging ...Swept volume solid modeling has been applied to many areas such as NC machining simulation and verification, robot workspace analysis, collision detection, and CAD. But self-intersections continue to be a challenging problem in the boundary representation of swept volume solids. A novel algorithm is presented in this paper to trim self-intersection regions in swept volume solids modeling. This trimming algorithm consists of two major steps: (1) roughly detecting self-intersection regions by checking intersections or overlapping of the envelop profiles; (2) splitting the whole envelop surfaces of the swept volume solid into separate non-self-intersecting patches to trim global self-intersections, and to trim local self-intersections, dividing local self-intersecting regions into patches and replacing self-intersecting patches with non-self-intersecting ones. Examples show that our algorithm is efficient and robust.展开更多
Neural stem cell(NSC)transplantation is a promising strategy for replacing lost neurons following spinal cord injury.However,the survival and differentiation of transplanted NSCs is limited,possibly owing to the neuro...Neural stem cell(NSC)transplantation is a promising strategy for replacing lost neurons following spinal cord injury.However,the survival and differentiation of transplanted NSCs is limited,possibly owing to the neurotoxic inflammatory microenvironment.Because of the important role of glucose metabolism in M1/M2 polarization of microglia/macrophages,we hypothesized that altering the phenotype of microglia/macrophages by regulating the activity of aldose reductase(AR),a key enzyme in the polyol pathway of glucose metabolism,would provide a more beneficial microenvironment for NSC survival and differentiation.Here,we reveal that inhibition of host AR promoted the polarization of microglia/macrophages toward the M2 phenotype in lesioned spinal cord injuries.M2 macrophages promoted the differentiation of NSCs into neurons in vitro.Transplantation of NSCs into injured spinal cords either deficient in AR or treated with the AR inhibitor sorbinil promoted the survival and neuronal differentiation of NSCs at the injured spinal cord site and contributed to locomotor functional recovery.Our findings suggest that inhibition of host AR activity is beneficial in enhancing the survival and neuronal differentiation of transplanted NSCs and shows potential as a treatment of spinal cord injury.展开更多
We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation accordi...We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation according to the user's input, and then normal filtering was applied to faces of feature regions. Finally, the vertices of the feature region were gradually updated based on new face normals using a least-squares error criterion. Experimental results demonstrate that the method is effective and robust in sharpening meshes.展开更多
基金supported by Clinical Scientific Foundation of Zhejiang Medical Association of China,No.2018ZYC-A09(to HL)
文摘Caspase-8 plays an important role in the mediation of inflammation and the effect of its role in subarachnoid hemorrhage remains elusive.The nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome has been postulated to mediate inflammation during SAH.The aim of the present study was to investigate the effects of caspase-8 inhibition on SAH injury and further elucidate the molecular mechanisms.In this study,a subarachnoid hemorrhage model was established by endovascular perforation process in adult male Sprague-Dawley rats.Z-IETD-FMK(0.5,1,2 mg/kg;an inhibitor of caspase-8)was delivered via intravenous(tail vein)injection immediately after subarachnoid hemorrhage.After 12 hours of subarachnoid hemorrhage,western blot assay showed that the expression of cleaved caspase-8 was significantly increased at 12 hours,peaked at 24 hours,and then decreased at 72 hours after subarachnoid hemorrhage.Immunofluorescence staining demonstrated that caspase-8 was expressed in microglia after subarachnoid hemorrhage.Z-IETDFMK significantly improved neurological deficits and reduced brain water content 24 hours after subarachnoid hemorrhage.The Morris water maze and rotarod test confirmed that Z-IETD-FMK significantly improved spatial learning and memory abilities and motor coordination at 21–27 days after subarachnoid hemorrhage.Furthermore,inhibition of caspase-8 activation reduced the expression of pyrin domain-containing 3,caspase-1,and interleukin-1βafter subarachnoid hemorrhage.In conclusion,our findings suggest that caspase-8 inhibition alleviates subarachnoid hemorrhage-induced brain injuries by suppressing inflammation.The study was approved by the Institutional Animal Ethics Committee of the First Affiliated Hospital,School of Medicine,Zhejiang University,China(approval No.2016-193)on February 25,2016.
基金Project supported by the National Natural Science Foundation of China (No. 60473106)the Hi-Tech Research and Development Program (863) of China (Nos. 2007AA01Z311 and 2007AA04Z1A5)the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20060335114)
文摘Swept volume solid modeling has been applied to many areas such as NC machining simulation and verification, robot workspace analysis, collision detection, and CAD. But self-intersections continue to be a challenging problem in the boundary representation of swept volume solids. A novel algorithm is presented in this paper to trim self-intersection regions in swept volume solids modeling. This trimming algorithm consists of two major steps: (1) roughly detecting self-intersection regions by checking intersections or overlapping of the envelop profiles; (2) splitting the whole envelop surfaces of the swept volume solid into separate non-self-intersecting patches to trim global self-intersections, and to trim local self-intersections, dividing local self-intersecting regions into patches and replacing self-intersecting patches with non-self-intersecting ones. Examples show that our algorithm is efficient and robust.
基金supported by the National Natural Science Foundation of China,Nos.81601056(to KZ),81901252(to QZ)Shaanxi Key Research and Development Program of China,No.2020SF-083(to KZ)+1 种基金Sanming Project of Medicine in Shenzhen of China,No.SZSM201911011(to SXW)the Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration(Tongji University,Ministry of Education)of China(to KZ).
文摘Neural stem cell(NSC)transplantation is a promising strategy for replacing lost neurons following spinal cord injury.However,the survival and differentiation of transplanted NSCs is limited,possibly owing to the neurotoxic inflammatory microenvironment.Because of the important role of glucose metabolism in M1/M2 polarization of microglia/macrophages,we hypothesized that altering the phenotype of microglia/macrophages by regulating the activity of aldose reductase(AR),a key enzyme in the polyol pathway of glucose metabolism,would provide a more beneficial microenvironment for NSC survival and differentiation.Here,we reveal that inhibition of host AR promoted the polarization of microglia/macrophages toward the M2 phenotype in lesioned spinal cord injuries.M2 macrophages promoted the differentiation of NSCs into neurons in vitro.Transplantation of NSCs into injured spinal cords either deficient in AR or treated with the AR inhibitor sorbinil promoted the survival and neuronal differentiation of NSCs at the injured spinal cord site and contributed to locomotor functional recovery.Our findings suggest that inhibition of host AR activity is beneficial in enhancing the survival and neuronal differentiation of transplanted NSCs and shows potential as a treatment of spinal cord injury.
基金supported by the Hi-Tech Research and Development Pro-gram (863) of China (Nos. 2007AA01Z311 and 2007AA04Z1A5)the Doctoral Fund of MOE of China (No. 20060335114)the Science and Technology Program of Zhejiang Province, China (No. 2007C21006)
文摘We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation according to the user's input, and then normal filtering was applied to faces of feature regions. Finally, the vertices of the feature region were gradually updated based on new face normals using a least-squares error criterion. Experimental results demonstrate that the method is effective and robust in sharpening meshes.