期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural transformation and energy analysis for pile-up dislocations at triple junction of grain boundary 被引量:1
1
作者 Ying-jun GAO Zong-ji HUANG +4 位作者 Qian-qian DENG Kun LIAO Yi-xuan LI Xiao-Ai YI zhi-rong luo 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期45-63,共19页
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G... An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed. 展开更多
关键词 triple junction of grain boundary dislocation pile-up dislocation structural transformation energy model for pile-up ultrafine-grain materials
下载PDF
Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain:Atomistic and continuum modeling 被引量:4
2
作者 Ying-Jun Gao Qian-Qian Deng +3 位作者 Zhe-yuan Liu Zong-Ji Huang Yi-Xuan Li zhi-rong luo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期236-250,共15页
The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two... The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreement with that of the experiment. 展开更多
关键词 Grain boundary splitting Grain growth Dislocation reaction Atomistic simulation Continuum modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部