期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Improvement effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)on hydrogen storage performance of MgH_(2)
1
作者 Yingyan Zhao zhibing liu +5 位作者 Jiangchuan liu Yunfeng Zhu Jiguang Zhang Yana liu Xiaohui Hu Liquan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were suc... The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields. 展开更多
关键词 Magnesium hydride Reversible solid solution Core-shell nanoparticles Hydrogen storage performance
下载PDF
Early chatter identification based on optimized VMD with multi-band information fusion and compression method in robotic milling process
2
作者 Sichen CHEN Zhiqiang LIANG +5 位作者 Yuchao DU Zirui GAO Haoran ZHENG zhibing liu Tianyang QIU Xibin WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期464-484,共21页
Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators ... Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process. 展开更多
关键词 Robotic milling Chatter detection Variational mode decomposition Information fusion and compression Chatter featur
原文传递
Influence of laser shock peening on surface integrity and tensile property of high strength low alloy steel 被引量:6
3
作者 Yong WANG Xiaoyu PAN +4 位作者 Xibin WANG zhibing liu Shuyao liu Wenjuan WAN Puyi WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期199-208,共10页
Laser Shock Peening(LSP)is a well-established surface treatment commonly used to improve mechanical properties of material’s surfaces.To further understand the relationship between tensile property and fatigue life i... Laser Shock Peening(LSP)is a well-established surface treatment commonly used to improve mechanical properties of material’s surfaces.To further understand the relationship between tensile property and fatigue life improvement of high strength low alloy steel in the LSP process,LSP treatment of 32 CrNi high strength low alloy steel was carried out by YAG laser with pulse energy of 15 J,and tensile property was tested by electronic universal material testing machine.Surface morphology,residual stress and tensile fracture of the specimens before and after LSP were observed by white light interferometer(WLI),X-ray measuring apparatus and scanning electron microscope(SEM).Result shows that LSP did not change tensile strength of 32 CrNi steel but cause yield characteristic transform from obvious yield point to no yield phenomenon which is the only factor benefiting fatigue life,indicating that the increment of fatigue life was probably related to the disappearance of yield phenomenon.Formation mechanisms of tensile fractures and yield phenomenon induced by LSP at room temperature were also discussed and completely revealed.Deeper compressive residual stress and flat grains contributed to the transition of yield characteristic and lower elongation rate of 32 CrNi steel subjected to LSP. 展开更多
关键词 32CrNi steel Laser shock peening Residual stress Tensile property Yield characteristic
原文传递
Anti-disturbance attitude control of combined spacecraft with enhanced control allocation scheme 被引量:6
4
作者 Jianzhong QIAO zhibing liu Wenshuo LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1741-1751,共11页
In this paper, we propose a novel anti-disturbance attitude control law for combined spacecraft with an improved closed-loop control allocation scheme. More specifically, a saturated approach is adopted to guarantee t... In this paper, we propose a novel anti-disturbance attitude control law for combined spacecraft with an improved closed-loop control allocation scheme. More specifically, a saturated approach is adopted to guarantee the global asymptotic stability under control input saturation.To enhance the robustness of the system, a nonlinear disturbance observer is constructed to compensate the disturbances caused by inertial parameter uncertainty and unmodeled dynamics. Next,the quadratic programming algorithm is used to obtain an optimal open-loop control allocation scheme, where both energy consumption and actuator saturation have been considered in the allocation of the virtual control command. Then, a modified closed-loop control allocation scheme is proposed to reduce the allocation error under the actuator uncertainty. Finally, stability analysis of the closed-loop system with the proposed allocation scheme is provided. Simulation results confirm the effectiveness of the proposed control scheme. 展开更多
关键词 Anti-disturbance control Attitude control Combined spacecraft Control allocation Disturbance observer
原文传递
Mesoscale fabrication of a complex surface for integral impeller blades 被引量:2
5
作者 Xibin WANG Tianfeng ZHOU +4 位作者 Lijing XIE Li JIAO zhibing liu Zhiqiang LIANG Pei YAN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第1期116-131,共16页
Integral impeller is the most important compo- nent of a mini-engine. However, the machining of a mesoscale impeller with a complex integral surface is difficult because of its compact size and high accuracy requireme... Integral impeller is the most important compo- nent of a mini-engine. However, the machining of a mesoscale impeller with a complex integral surface is difficult because of its compact size and high accuracy requirement. A mesoscale component is usually manufac- tured by milling. However, a conventional milling tool cannot meet the machining requirements because of its size and stiffness. For the fabrication of a complex integral impeller, a micro-ball-end mill is designed in accordance with the non-instantaneous-pole envelope principle and manufactured by grinding based on the profile model of the helical groove and the mathematical model of the cutting edge curve. Subsequently, fractal theory is applied to characterize the surface quality of the integral impeller. The fractal theory-based characterization shows that the completed mesoscale integral impeller exhibits a favorable performance in terms of mechanical properties and morphological accuracy. 展开更多
关键词 mesoscale fabrication micro-milling tool mesoscale milling impeller blade
原文传递
A plastic strain energy method exploration between machined surface integrity evolution and torsion fatigue behaviour of low alloy steel
6
作者 Yong WANG Xibin WANG +7 位作者 zhibing liu Shuyao liu Sitao WANG Hongtao CHEN Ci SONG Yifan BAI Pai WANG Yang liu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期412-429,共18页
To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for serv... To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for service performance,four multistage machining processes were applied to the 45Cr Ni Mo VA steel,including the Rough Turning process(RT),RT+the Finish Turning process(FRT),FRT+the Grinding process(GFRT)and RT+the Finish Turning process on dry cutting condition(FRT0).The result showed that the FRT process’s average low-cycle torsional fatigue life increased by 50%when it evolved from the RT process.The lower surface roughness of R1.3μm caused the total strain energy to increase by 163.8 Pa mm/mm instead of the unchanged strain energy density,and the crack feature evolved from some specific bulges to flat shear plane characteristics.When the GFRT process evolved from the FRT process,its average fatigue life increased by 1.45 times,compared with the RT process.Plastic strain amplitude decreased by 21%,and the strain energy density decreased by 4%due to more considerable compressive residual stress(-249 MPa).Plastic deformation layer depth had a consistent tendency with surface roughness.In this paper,surface integrity evolutions on cyclic characteristics and fatigue behaviour have also been explained.A fatigue life prediction model based on the energy method for machined surface integrity is proposed. 展开更多
关键词 Cyclic hysteresis loop Multistage machining processes Strain energy Surface integrity evolution Torsional fatigue
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部