Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most important diseases threatening the yield and stability of wheat production in China and many other countries.Identification and utilizati...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most important diseases threatening the yield and stability of wheat production in China and many other countries.Identification and utilization of new genes for durable stripe rust resistance are important for ongoing control of this disease.The objectives of this study were to identify quantitative trait loci(QTL)associated with adult-plant stripe rust resistance in the Chinese wheat landrace Yibinzhuermai(YBZR)and to provide wheat breeders with new sources of potentially durable resistance.A total of 117 recombinant inbred lines(RILs)(F5:8)derived from a cross between YBZR and highly susceptible cultivar Taichung 29(TC29)were assessed for stripe rust severity in field experiments at Wenjiang in 2016 and 2017 and Chongzhou in 2016,2017,2018,and 2019 in Sichuan following inoculation with a mixture of current Pst races.The RILs were genotyped using the Wheat55K single nucleotide polymorphism(SNP)array.Three QTL were identified on chromosome arms 6AL,5BL and 7DS.QYr.YBZR-6AL and QYr.YBZR-7DS conferred major effects in all field environments,explaining 10.6%to 14.7%and 11.5%to 21.2%of phenotypic variation,respectively.The QTL on 5BL and 7DS likely correspond to previously known QTL,whereas QYr.YBZR-6AL is probably novel.Haplotype analysis revealed that the resistance allele at QYr.YBZR-6AL was present in 2.8%of 324 Chinese wheat landraces.SNP markers closely linked with QYr.YBZR-6AL were converted to kompetitive allele-specific PCR markers and validated in the RIL population and a subset of 92 wheat cultivars.QYr.YBZR-6AL and its markers should be useful in breeding programs to improve the level and durability of stripe rust resistance.展开更多
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by grants from the National Key Research and Development Program of China(2016YFD0100100)the International Science and Technology Cooperation and Exchanges Programs of Science and Technology Department of Sichuan Province(2019YFH0063)the Applied Basic Research Programs of Sichuan Province(2021YJ0297)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most important diseases threatening the yield and stability of wheat production in China and many other countries.Identification and utilization of new genes for durable stripe rust resistance are important for ongoing control of this disease.The objectives of this study were to identify quantitative trait loci(QTL)associated with adult-plant stripe rust resistance in the Chinese wheat landrace Yibinzhuermai(YBZR)and to provide wheat breeders with new sources of potentially durable resistance.A total of 117 recombinant inbred lines(RILs)(F5:8)derived from a cross between YBZR and highly susceptible cultivar Taichung 29(TC29)were assessed for stripe rust severity in field experiments at Wenjiang in 2016 and 2017 and Chongzhou in 2016,2017,2018,and 2019 in Sichuan following inoculation with a mixture of current Pst races.The RILs were genotyped using the Wheat55K single nucleotide polymorphism(SNP)array.Three QTL were identified on chromosome arms 6AL,5BL and 7DS.QYr.YBZR-6AL and QYr.YBZR-7DS conferred major effects in all field environments,explaining 10.6%to 14.7%and 11.5%to 21.2%of phenotypic variation,respectively.The QTL on 5BL and 7DS likely correspond to previously known QTL,whereas QYr.YBZR-6AL is probably novel.Haplotype analysis revealed that the resistance allele at QYr.YBZR-6AL was present in 2.8%of 324 Chinese wheat landraces.SNP markers closely linked with QYr.YBZR-6AL were converted to kompetitive allele-specific PCR markers and validated in the RIL population and a subset of 92 wheat cultivars.QYr.YBZR-6AL and its markers should be useful in breeding programs to improve the level and durability of stripe rust resistance.