Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control...Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13...To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.展开更多
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ...Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.展开更多
2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock ...2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.展开更多
This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing...This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.展开更多
A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation ...A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation of the maximum possible dilation angle is the degradation of the 3D average equivalent dip angle of the actual contact joint asperities.Firstly,models for calculating the maximum possible dilation angle at the initial and residual shear stress stages are proposed by analyzing the 3D joint morphology characteristics of the corresponding shear stages.Secondly,the variation law of the maximum possible dilation angle is quantified by studying the degradation law of the joint micro convex body.Based on the variation law of the maximum possible dilation angle,the maximum possible shear strength model is proposed.Furthermore,a method to calculate the shear stiffness degradation in the plastic stage is proposed.According to the maximum possible shear strength of rock joints,the shear stress-shear displacement prediction model of rock joints is obtained.The new model reveals that there is a close relationship between joint shear strength and actual contact joint roughness,and the degradation of shear strength after the peak is due to the degradation of actual contact joint roughness.展开更多
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult....In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。展开更多
An earthquake is one of the greatest natural disaster risks to human beings.With their unexpectedness and shockingly destructive power,earthquakes can cause major catastrophes to human society.According to the theory ...An earthquake is one of the greatest natural disaster risks to human beings.With their unexpectedness and shockingly destructive power,earthquakes can cause major catastrophes to human society.According to the theory of plate tectonics,the lithosphere is divided into plates that move relative to each other,with most earthquakes worldwide occurring at the plates’junction.Statistically,more than 90% of natural earthquakes are due to seismogenic faults,which are caused by the relative motion of two plate blocks along the tectonic zone(i.e.,surfaces of the blocks).展开更多
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar...In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels.展开更多
A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was sel...A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was selected to simulate a weak structural plane in the slope to reproduce the landslide process.From an experimental perspective, the variation trend of shear strength parameters of weak structural plane and the mechanical support characteristics of NPR(negative Poisson’s ratio) anchor cable under the condition of a large landslide deformation and failure were examined. The results of this model test showed that slope failure has four distinct stages:(1) soil compaction stage,(2) crack generation stage,(3) crack propagation stage, and(4) sliding plane transfixion stage. According to the test results, the rock mechanics parameters of weak surface in the footwall slope of Nanfen open-pit mine were calculated.The cohesion is approximately 1.35×10~5 Pa, and the internal friction angle is approximately 6.33°.During slope failure, the NPR anchor cable experiences a large deformation but no damage occurs, indicating that the NPR anchor cable can be continuously monitored and reinforced during the deformation and failure of landslide. The stress characteristics of NPR anchor cables during the test are consistent with the monitoring results of Newtonian force at the landslide site, proving that NPR anchor cables are effective and reasonable in landslide monitoring and early warning.展开更多
Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directio...Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directional rock-breaking technique,has been developed.The directional roof-cutting mechanism of the IESCS method,driven by high-pressure gas,was theoretically analyzed.Laboratory experiments and numerical simulations proved the directional slitting effect of the IESCS method to be excellent.Compared with shaped-charge blasting,the charge of IESCS was reduced by 8.9%,but the crack rate increased by 9%in field tests.After IESCS pre-splitting,the roof directionally collapsed along the cutting line,and the gangue filled the goaf.Moreover,the directional roof cutting by the IESCS could decrease roadway stress.The average pressure of hydraulic supports on the cutting side of the roof was 31%lower than that on the non-cutting side of the roof after pre-splitting.After the self-formed roadway constructed by the IESCS was stabilized,the final relative displacement of the roof and floor was 157.3 mm,meeting the required standard of the next working face.Thus,the IESCS was effectively applied to directional roof pre-splitting.The results demonstrate the promising potential of IESCS in the mining and geotechnical fields.展开更多
In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on thi...In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed f...The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed for tunneling.IE,whose components are derived from solid wastes such as coal gangue and straw conduces to realizing the reuse of waste.Moreover,its cost is lower than explosives.Blind guns of IE are easy to treat with water.The IE tunneling method is classified into two categories,i.e.IE with a single fracture(IESF)and IE with multiple fractures(IEMF),which are used to form the tunnel crosssection directionally cross-section and to fragment the rocks inside the cross-section,respectively.In this study,the principle of IE tunneling was elaborated first.Then,tunneling experiments and numerical simulations were performed on IE,conventional blasting(CB)and shaped charge blasting(SCB)in comparison.The experimental and numerical results show that IE achieved the best performance of directional rock breaking and corresponded to the most minor excavation-induced damage zone of the surrounding rock.Besides,the tunnel cross-section created by IE was flat and smooth.Comparing IE with CB and SCB,the over/under-excavation area decreased by 64%and 17%,and the excavation-induced damage zone fell by 26%and 11%,respectively.The range of the loose circle is reduced,which is conducive to improving the long-term stability of the roadway.The research provides a safe and economical tunneling method with excellent application prospects.展开更多
Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant...Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.展开更多
A novel meta steel with negative Poisson’s ratio effect(termed as micro-NPR steel)is developed for rock support in deep underground engineering.It possesses high strength,high ductility,and high energy absorption cha...A novel meta steel with negative Poisson’s ratio effect(termed as micro-NPR steel)is developed for rock support in deep underground engineering.It possesses high strength,high ductility,and high energy absorption characteristics.In this paper,static tension and modified dynamic drop hammer tests are performed on this novel material to investigate its mechanical properties first.Then based on this material,a new generation of micro-NPR anchor cable is developed and applied in field tests subjected to blasting dynamic loads.The results of laboratory tests reveal that the ultimate elongation of micro-NPR steel under dynamic impacts is more than 30%and it is over 1.5 times that of Q235;the plastic and total energy absorption of micro-NPR are both significantly higher than that of Q235.Field test indicates the fine controlling effect of micro-NPR anchor cable on surrounding rock mass under dynamic loads.Axial force confirms that micro-NPR cables can distribute and absorb the dynamic energy uniformly around the supported rock when subjected to dynamic disturbance,avoiding local failure induced by excessive stress concentration.The excavation compensation principle and energy-absorbing characteristics are used to explain the support mechanisms.Thus,micro-NPR material and anchor cable can control and prevent dynamic disasters in deep underground engineering effectively.展开更多
With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials ...With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.展开更多
Due to complex geological formations,lateral damage often occurs during excavation in mountainous layered soft rock double-track tunnels.This paper discusses the stresses and the damage characteristics of the surround...Due to complex geological formations,lateral damage often occurs during excavation in mountainous layered soft rock double-track tunnels.This paper discusses the stresses and the damage characteristics of the surrounding rock under overload in a mountainous layered soft rock double-track tunnel through indoor model experiments to provide a basis for the effective control of lateral damage.The experiments show that the conventional support method cannot effectively control the lateral damage due to interlayer sliding.Therefore,the negative Poisson’s ratio(NPR)anchor/cable control method is proposed.And the scientificity and feasibility of the NPR anchor/cable control technology are proved by the field application and monitoring data of the Minxian Tunnel and Changning Tunnel.It is further demonstrated that high preload is the most effective way to control the lateral damage in layered soft rock tunnels.展开更多
基金supported by the National Natural Science Foundation of China (41941018)the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUEK 2217)the Foundation of Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province (PCMGH-2022-03).
文摘Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金funding support from the National Natural Science Foundation of China(NSFC)(Grant Nos.41941018 and 52304111)the Program of China Scholarship Council(Grant No.202206430007).
文摘To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
基金National Natural Science Foundation of China,Grant/Award Number:41941018State Key Laboratory for GeoMechanics and Deep Underground Engineering,Grant/Award Number:SKLGDUEK202201。
文摘Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018).
文摘2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.
基金This experimental study was partially funded by the National Natural Science Foundation of China(Grant Nos.41572299and 41831290)the 3D-printed modeling work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY18D020003),which is gratefully acknowledged.
文摘This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.
基金National Natural Science Foundation of China(Nos.52208328 and 52104090)Innovation Fund Research Project of State Key Laboratory for GeoMechanics and Deep Underground Engineering(No.SKLGDUEK202201)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(No.Z020007).
文摘A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation of the maximum possible dilation angle is the degradation of the 3D average equivalent dip angle of the actual contact joint asperities.Firstly,models for calculating the maximum possible dilation angle at the initial and residual shear stress stages are proposed by analyzing the 3D joint morphology characteristics of the corresponding shear stages.Secondly,the variation law of the maximum possible dilation angle is quantified by studying the degradation law of the joint micro convex body.Based on the variation law of the maximum possible dilation angle,the maximum possible shear strength model is proposed.Furthermore,a method to calculate the shear stiffness degradation in the plastic stage is proposed.According to the maximum possible shear strength of rock joints,the shear stress-shear displacement prediction model of rock joints is obtained.The new model reveals that there is a close relationship between joint shear strength and actual contact joint roughness,and the degradation of shear strength after the peak is due to the degradation of actual contact joint roughness.
基金supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)the Foundation for the Opening of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2129)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。
文摘An earthquake is one of the greatest natural disaster risks to human beings.With their unexpectedness and shockingly destructive power,earthquakes can cause major catastrophes to human society.According to the theory of plate tectonics,the lithosphere is divided into plates that move relative to each other,with most earthquakes worldwide occurring at the plates’junction.Statistically,more than 90% of natural earthquakes are due to seismogenic faults,which are caused by the relative motion of two plate blocks along the tectonic zone(i.e.,surfaces of the blocks).
基金The authors would like to acknowledge the financial support from the Key Special Project of the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels.
基金This study was supported by Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geologic Hazards(Grant no.PCMGH-2016-Z-02).
文摘A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was selected to simulate a weak structural plane in the slope to reproduce the landslide process.From an experimental perspective, the variation trend of shear strength parameters of weak structural plane and the mechanical support characteristics of NPR(negative Poisson’s ratio) anchor cable under the condition of a large landslide deformation and failure were examined. The results of this model test showed that slope failure has four distinct stages:(1) soil compaction stage,(2) crack generation stage,(3) crack propagation stage, and(4) sliding plane transfixion stage. According to the test results, the rock mechanics parameters of weak surface in the footwall slope of Nanfen open-pit mine were calculated.The cohesion is approximately 1.35×10~5 Pa, and the internal friction angle is approximately 6.33°.During slope failure, the NPR anchor cable experiences a large deformation but no damage occurs, indicating that the NPR anchor cable can be continuously monitored and reinforced during the deformation and failure of landslide. The stress characteristics of NPR anchor cables during the test are consistent with the monitoring results of Newtonian force at the landslide site, proving that NPR anchor cables are effective and reasonable in landslide monitoring and early warning.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.41941018)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX21_2368).
文摘Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directional rock-breaking technique,has been developed.The directional roof-cutting mechanism of the IESCS method,driven by high-pressure gas,was theoretically analyzed.Laboratory experiments and numerical simulations proved the directional slitting effect of the IESCS method to be excellent.Compared with shaped-charge blasting,the charge of IESCS was reduced by 8.9%,but the crack rate increased by 9%in field tests.After IESCS pre-splitting,the roof directionally collapsed along the cutting line,and the gangue filled the goaf.Moreover,the directional roof cutting by the IESCS could decrease roadway stress.The average pressure of hydraulic supports on the cutting side of the roof was 31%lower than that on the non-cutting side of the roof after pre-splitting.After the self-formed roadway constructed by the IESCS was stabilized,the final relative displacement of the roof and floor was 157.3 mm,meeting the required standard of the next working face.Thus,the IESCS was effectively applied to directional roof pre-splitting.The results demonstrate the promising potential of IESCS in the mining and geotechnical fields.
基金the National Natural Science Foundation of China(Grant No.41941018)the Science and Technology Major Project of Gansu Province(Grant No.19ZD2GA005)the Research Institute for Deep Underground Science and Engineering Foundation(Grant No.XD2021023)。
文摘In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX21_2368)。
文摘The use of explosives is restricted on some important holidays,and the handling of unexploded charge is very dangerous.Therefore,an innovative non-explosive technology called instantaneous expansion(IE)was developed for tunneling.IE,whose components are derived from solid wastes such as coal gangue and straw conduces to realizing the reuse of waste.Moreover,its cost is lower than explosives.Blind guns of IE are easy to treat with water.The IE tunneling method is classified into two categories,i.e.IE with a single fracture(IESF)and IE with multiple fractures(IEMF),which are used to form the tunnel crosssection directionally cross-section and to fragment the rocks inside the cross-section,respectively.In this study,the principle of IE tunneling was elaborated first.Then,tunneling experiments and numerical simulations were performed on IE,conventional blasting(CB)and shaped charge blasting(SCB)in comparison.The experimental and numerical results show that IE achieved the best performance of directional rock breaking and corresponded to the most minor excavation-induced damage zone of the surrounding rock.Besides,the tunnel cross-section created by IE was flat and smooth.Comparing IE with CB and SCB,the over/under-excavation area decreased by 64%and 17%,and the excavation-induced damage zone fell by 26%and 11%,respectively.The range of the loose circle is reduced,which is conducive to improving the long-term stability of the roadway.The research provides a safe and economical tunneling method with excellent application prospects.
基金supported by the Foundation for the Opening of State Key Laboratory for GeoMechanics&Deep Underground Engineering(Grant No.SKLGDUEK2129).
文摘Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.
基金supported by the National Natural Science Foundation of China(Grant No.41941018)the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering(Grant No.SKLGDUEK 2217)the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province(Grant No.PCMGH-2022-03).
文摘A novel meta steel with negative Poisson’s ratio effect(termed as micro-NPR steel)is developed for rock support in deep underground engineering.It possesses high strength,high ductility,and high energy absorption characteristics.In this paper,static tension and modified dynamic drop hammer tests are performed on this novel material to investigate its mechanical properties first.Then based on this material,a new generation of micro-NPR anchor cable is developed and applied in field tests subjected to blasting dynamic loads.The results of laboratory tests reveal that the ultimate elongation of micro-NPR steel under dynamic impacts is more than 30%and it is over 1.5 times that of Q235;the plastic and total energy absorption of micro-NPR are both significantly higher than that of Q235.Field test indicates the fine controlling effect of micro-NPR anchor cable on surrounding rock mass under dynamic loads.Axial force confirms that micro-NPR cables can distribute and absorb the dynamic energy uniformly around the supported rock when subjected to dynamic disturbance,avoiding local failure induced by excessive stress concentration.The excavation compensation principle and energy-absorbing characteristics are used to explain the support mechanisms.Thus,micro-NPR material and anchor cable can control and prevent dynamic disasters in deep underground engineering effectively.
基金supported by the National Natural Science Foundation of China(Grant No.41941018).
文摘With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant No.41941018)the Special Fund of Yueqi Scholars,China(Grant No.800015Z1207).
文摘Due to complex geological formations,lateral damage often occurs during excavation in mountainous layered soft rock double-track tunnels.This paper discusses the stresses and the damage characteristics of the surrounding rock under overload in a mountainous layered soft rock double-track tunnel through indoor model experiments to provide a basis for the effective control of lateral damage.The experiments show that the conventional support method cannot effectively control the lateral damage due to interlayer sliding.Therefore,the negative Poisson’s ratio(NPR)anchor/cable control method is proposed.And the scientificity and feasibility of the NPR anchor/cable control technology are proved by the field application and monitoring data of the Minxian Tunnel and Changning Tunnel.It is further demonstrated that high preload is the most effective way to control the lateral damage in layered soft rock tunnels.