Both yield and quality of Lanzhou lily(Lilium davidii var. unicolor) are seriously affected by continuous cropping. We attempted to understand the effects of intercropping on the obstacles associated with continuous c...Both yield and quality of Lanzhou lily(Lilium davidii var. unicolor) are seriously affected by continuous cropping. We attempted to understand the effects of intercropping on the obstacles associated with continuous cropping of Lanzhou lily(Lilium davidii var. unicolor). The changes of rhizosphere microbial biomass and diversity in interplanting and monoculturing systems were studied by using the Illumina Hi Seq sequencing technique. The contents and composition of lily root exudates were measured by gas chromatography–mass spectrometer(GC–MS). The intercropping results of Lanzhou lily showed:(1) There was no difference in the composition of the rhizosphere soil microbes at the phylum level, but the relative abundance of the microbes decreased; and the relative abundance of harmful fungi such as Fusarium sp. increased. The relative abundance of Pleosporales sp. and other beneficial bacteria were reduced. After OTU(operational taxonomic unit)clustering, there were some beneficial bacteria, such as Chaetomium sp., in the lily rhizosphere soil in the interplanting system that had not existed in the single-cropping system. We did not find harmful bacteria that had existed in the single-cropping systm in the rhizosphere soil of interplanting system. The above results indicated that the changes of relative abundance of soil fungi and bacteria in lily rhizosphere soil was not conducive to improving the ecological structure of rhizosphere soil microbes. At the same time, the microbial composition change is very complex—beneficial and yet inadequate at the same time.(2) Root exudates provide a matrix for the growth of microorganisms. Combined with the detection of root exudates, the decrease in the composition of the root exudates of the lily was probably the reason for the decrease of the relative abundance of microbes after intercropping. At the same time, the decrease of the relative content of phenolic compounds, which inhibit the growth of microorganisms, did not increase the relative content of rhizosphere soil microorganisms. Changes in amino acids and total sugars may be responsible for the growth of Fusarium sp.. The results showed that the intercropping pattern did not noticeably alleviate the obstacle to continuous cropping of Lanzhou lily, and the change of microbial biomass and diversity was even unfavorable. However, the emergence of some beneficial bacteria, the disappearance of harmful fungi, and other changes with intercropping are in favor of alleviation of obstacles to continuous cropping of Lanzhou lily.展开更多
Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edibl...Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress.展开更多
An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)reveale...An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)revealed that the accu mulation of heavy metals(over about 10 years)has affected the diversity of bacterial abundance and microbial community structure.The proximity of a sampling site to the QTH/Qinghai-Tibet Railway(QTR),which is effectively a measure of the density of human engineering,was the dominant factor influencing bacterial community diversity.The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas.The dominant phyla across all samples were Actinobacteria and Proteobacteria.The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR(MC/WC sam pling sites),and Ni,Co,and V were positively correlated with proximity to the QTH and QTR(MA/WA sampling sites).The results presented in this study provide an insight into the relationships among heavy metals and soil microbial commu nities,and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment.展开更多
To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in ...To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.展开更多
Fruits,as the reproductive organs of many higher plants,are an integral part of a balanced diet,providing rich nutrients and bioactive substances for our health.Over the years,the research on fruit development,quality...Fruits,as the reproductive organs of many higher plants,are an integral part of a balanced diet,providing rich nutrients and bioactive substances for our health.Over the years,the research on fruit development,quality formation and stress response has deepened,which sheds light on the regulatory mechanism and application of fruit quality improvement.Among the many regulatory factors,microRNAs(miRNAs)are a class of short non-coding RNAs,ranging from 20 to 24-nt,which post-transcriptionally regulate target gene expression.miRNAs and their functions have been extensively examined in plants especially in model species,and they play critical roles in the regulation of diverse biological processes in response to endogenous developmental signals and external environmental cues,respectively.In fruit crops,the function of miRNAs and their regulation have also been under intensive study.In particular,the novel roles of miRNAs that have not been revealed in the model annual species have been unraveling,which reflect the genetic,physiological,and developmental complexity of gene regulation in fruit crops.Here we review the current research progress achieved,specifically in fruit crops,with a focus on the function of miRNAs in the control of fruit development and quality as well as response to various stresses.The future prospects of miRNAs for quality-targeted fruit breeding are also discussed.展开更多
By analyzing the influence of pollution factors in each process on the environmentally sensitive area in construction and operation of oil and gas infrastructure,main problems were obtained:delimitation and implementa...By analyzing the influence of pollution factors in each process on the environmentally sensitive area in construction and operation of oil and gas infrastructure,main problems were obtained:delimitation and implementation of three control lines in land space planning,relevant environmental protection laws and regulations not perfect and specific,delimitation of environmentally sensitive area lack of sufficient demonstration,"conditional permission to pass"not be raised to an explicit provision,urban energy corridor planning not fully implement the concept of environmental protection,and the idea of adjacent spatial planning not be implemented yet.Moreover,it put forward countermeasures and suggestions for the construction department of oil and gas infrastructure.展开更多
Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show tha...Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show that a VOC in Nicotiana benthamiana(NbVOC1)facilitates viral infection.NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus(BNYVV).Transient overexpression of NbVOC1 or its homolog from Beta vulgaris(BvVOC1)enhanced BNYVV infection in N.benthamiana,which required the nuclear localization of VOC1.Consistent with this result,overexpressing NbVOC1 facilitated BNYVV infection,whereas,knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N.benthamiana plants.NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28,which enhances their self-interaction and DNA binding to the promoters of unfolded protein response(UPR)-related genes.We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription,forming a positive feedback loop to induce the UPR and facilitating BNYVV infection.Collectively,our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.展开更多
基金funded by Lanzhou Branch of the Chinese Academy of Sciences institutional cooperation program(2BY52BI61)the Key program of Chinese Academy of Sciences(22Y622AM1)
文摘Both yield and quality of Lanzhou lily(Lilium davidii var. unicolor) are seriously affected by continuous cropping. We attempted to understand the effects of intercropping on the obstacles associated with continuous cropping of Lanzhou lily(Lilium davidii var. unicolor). The changes of rhizosphere microbial biomass and diversity in interplanting and monoculturing systems were studied by using the Illumina Hi Seq sequencing technique. The contents and composition of lily root exudates were measured by gas chromatography–mass spectrometer(GC–MS). The intercropping results of Lanzhou lily showed:(1) There was no difference in the composition of the rhizosphere soil microbes at the phylum level, but the relative abundance of the microbes decreased; and the relative abundance of harmful fungi such as Fusarium sp. increased. The relative abundance of Pleosporales sp. and other beneficial bacteria were reduced. After OTU(operational taxonomic unit)clustering, there were some beneficial bacteria, such as Chaetomium sp., in the lily rhizosphere soil in the interplanting system that had not existed in the single-cropping system. We did not find harmful bacteria that had existed in the single-cropping systm in the rhizosphere soil of interplanting system. The above results indicated that the changes of relative abundance of soil fungi and bacteria in lily rhizosphere soil was not conducive to improving the ecological structure of rhizosphere soil microbes. At the same time, the microbial composition change is very complex—beneficial and yet inadequate at the same time.(2) Root exudates provide a matrix for the growth of microorganisms. Combined with the detection of root exudates, the decrease in the composition of the root exudates of the lily was probably the reason for the decrease of the relative abundance of microbes after intercropping. At the same time, the decrease of the relative content of phenolic compounds, which inhibit the growth of microorganisms, did not increase the relative content of rhizosphere soil microorganisms. Changes in amino acids and total sugars may be responsible for the growth of Fusarium sp.. The results showed that the intercropping pattern did not noticeably alleviate the obstacle to continuous cropping of Lanzhou lily, and the change of microbial biomass and diversity was even unfavorable. However, the emergence of some beneficial bacteria, the disappearance of harmful fungi, and other changes with intercropping are in favor of alleviation of obstacles to continuous cropping of Lanzhou lily.
基金the Gansu Science and Technology Major Project(Grant No.182D2NA010)the Science and Technology Service Network Initiative of the Chinese Academy of Sciences(Grant No.KFJ-STS-QYZD-120)the Key R&D plan of the Ningxia Hui Autonomous Region(Grant No.2019BBF02018)for the funding they provided。
文摘Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress.
基金funded by a grant from the Cold and Arid Regions Environmental and the Engineering Research Institute of the Chinese Academy of Sciences Nos. HHS-TSS-STS-1505 and 55Y855Z11, CAS "Light of West China" Program, Frontier Science Research Program of Chineses Academy of Scienc No. QYZDJ- SSW_SMC011
文摘An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)revealed that the accu mulation of heavy metals(over about 10 years)has affected the diversity of bacterial abundance and microbial community structure.The proximity of a sampling site to the QTH/Qinghai-Tibet Railway(QTR),which is effectively a measure of the density of human engineering,was the dominant factor influencing bacterial community diversity.The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas.The dominant phyla across all samples were Actinobacteria and Proteobacteria.The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR(MC/WC sam pling sites),and Ni,Co,and V were positively correlated with proximity to the QTH and QTR(MA/WA sampling sites).The results presented in this study provide an insight into the relationships among heavy metals and soil microbial commu nities,and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment.
文摘To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.
基金funded by the National Natural Science Foundation of China(31772371,32071810)Natural Science Foundation of Guangdong Province(2021A1515011258)。
文摘Fruits,as the reproductive organs of many higher plants,are an integral part of a balanced diet,providing rich nutrients and bioactive substances for our health.Over the years,the research on fruit development,quality formation and stress response has deepened,which sheds light on the regulatory mechanism and application of fruit quality improvement.Among the many regulatory factors,microRNAs(miRNAs)are a class of short non-coding RNAs,ranging from 20 to 24-nt,which post-transcriptionally regulate target gene expression.miRNAs and their functions have been extensively examined in plants especially in model species,and they play critical roles in the regulation of diverse biological processes in response to endogenous developmental signals and external environmental cues,respectively.In fruit crops,the function of miRNAs and their regulation have also been under intensive study.In particular,the novel roles of miRNAs that have not been revealed in the model annual species have been unraveling,which reflect the genetic,physiological,and developmental complexity of gene regulation in fruit crops.Here we review the current research progress achieved,specifically in fruit crops,with a focus on the function of miRNAs in the control of fruit development and quality as well as response to various stresses.The future prospects of miRNAs for quality-targeted fruit breeding are also discussed.
文摘By analyzing the influence of pollution factors in each process on the environmentally sensitive area in construction and operation of oil and gas infrastructure,main problems were obtained:delimitation and implementation of three control lines in land space planning,relevant environmental protection laws and regulations not perfect and specific,delimitation of environmentally sensitive area lack of sufficient demonstration,"conditional permission to pass"not be raised to an explicit provision,urban energy corridor planning not fully implement the concept of environmental protection,and the idea of adjacent spatial planning not be implemented yet.Moreover,it put forward countermeasures and suggestions for the construction department of oil and gas infrastructure.
基金supported by the National Natural Science Foundation of China(32270165 and 31872921)in part by China Agricultural Industry Technology System(Grant No.CARS-170304).
文摘Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show that a VOC in Nicotiana benthamiana(NbVOC1)facilitates viral infection.NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus(BNYVV).Transient overexpression of NbVOC1 or its homolog from Beta vulgaris(BvVOC1)enhanced BNYVV infection in N.benthamiana,which required the nuclear localization of VOC1.Consistent with this result,overexpressing NbVOC1 facilitated BNYVV infection,whereas,knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N.benthamiana plants.NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28,which enhances their self-interaction and DNA binding to the promoters of unfolded protein response(UPR)-related genes.We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription,forming a positive feedback loop to induce the UPR and facilitating BNYVV infection.Collectively,our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.