In this paper, Ni/Zr–Yb–O catalysts with different sodium contents are prepared by a co-precipitation method, using aqueous Na2CO3 solution as a precipitant, and the effect of sodium on the catalyst structure and ca...In this paper, Ni/Zr–Yb–O catalysts with different sodium contents are prepared by a co-precipitation method, using aqueous Na2CO3 solution as a precipitant, and the effect of sodium on the catalyst structure and catalytic performance for syngas methanation is extensively investigated using five Ni/Zr–Yb–O catalysts, containing 0, 0.5, 1.5,4.5 and 13.5 wt% Na^+, those are denoted as Cat-1, Cat-2, Cat-3, Cat-4 and Cat-5 respectively. It is found that the interaction between Ni and support determines the catalytic performance of Ni/Zr–Yb–O and the residual sodium content negatively affects the interaction between Ni and support. Cat-1 exhibits an excellent catalytic performance.During a long run time of 380 h, no deactivation is observed and both CO conversion and CH4 selectivity maintain a level above 90%. However, Cat-3 and Cat-5 suffer rapid deactivation under the same reaction condition. The characterization results indicate the strong interaction between Ni and support enables Cat-1 to possess well dispersed Ni species, resistance to sintering and carbon deposition and thus the excellent catalytic performance. However, the presence of sodium ions over Ni/Zr–Yb–O degrades the interaction between Ni and support and the catalytic performance, especially for the stability. The relative weak interaction between Ni and support results in severe sintering of both ZrO2 and Ni under the reaction condition, carbon deposition and the poor catalytic performance.展开更多
To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen...To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.展开更多
The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catal...The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.展开更多
A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a...A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.展开更多
In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig ring...In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig rings were successfully transformed into the supported catalytic packing for the reactive distillation,and were further evaluated with esterification reaction of ethyl acetate by means of the fully mixed reactor,the ultrasonic destruction,the cyclic catalysis reaction and the lab-scale distillation column experiment.This catalyst coating has good adhesion with the substrate.It can withstand 24 h of ultrasound damage and shows good stability in three cycle catalytic experiments.This kind of coated catalyst has better catalytic activity than the commercial Amberlyst 15 dry.In the lab-scale reaction distillation,the supported catalyst Raschig ring can achieve a higher conversion in comparison with the tea bag catalytic packing of Amberlyst 15 dry under some conditions.展开更多
充分考虑碎煤加压熔渣气化(British Gas Lurgi, BGL)炉内的流动特性,将BGL气化炉分为并流段和逆流段,并依此建立了BGL气化炉的一维稳态机理模型.并利用该模型模拟了以烟煤为原料的某工业BGL气化炉,模拟结果与工业实测值误差小于2%,从而...充分考虑碎煤加压熔渣气化(British Gas Lurgi, BGL)炉内的流动特性,将BGL气化炉分为并流段和逆流段,并依此建立了BGL气化炉的一维稳态机理模型.并利用该模型模拟了以烟煤为原料的某工业BGL气化炉,模拟结果与工业实测值误差小于2%,从而验证该模型的正确性.然后在所得到模型的基础上探讨了氧煤比及汽煤比对气化性能的影响.研究表明,氧煤比对碳转化率以及蒸汽分解率的影响较大,随着氧煤比增加,碳转化率增大,蒸汽分解率先增大后减小,当氧煤比为0.47时,蒸汽分解率最大;汽煤比增大有利于水煤气变换反应,但该反应受化学平衡限制,当气化剂充足时,蒸汽的消耗量将小于其增加量,随着汽煤比增大蒸汽分解率逐渐降低.展开更多
Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(...Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(XRD)and scanning electron microscopy(SEM),respectively.The main crystalline phase is monoclinic Nd(Mg_(1/2)Sn_(1/2))O_(3) with a double perovskite structure(P21/n space group)for the NMS system proved by XRD.The sample at x=0.01 has the best crystallinity and evenly distributed crystal grains observed by SEM.The optimum performances(ε_(r)=19.87,Q×f=41840 GHz,f=12.05 GHz)are obtained at x=0.01.Lattice vibrational modes of the Raman spectra were assigned and illustrated,in detail.The dielectric properties obtained by fitting infrared reflectance spectra with the help of four-parameter semi-quantum model are consistent with the calculated values by microscopic polarization and damping coefficients.The reverse translational vibration of the NdeMgO_(6),the F_(5u)^((5)) mode,provides the greatest contribution to the dielectric response.The relationships between crystal structures and dielectric properties were mainly established using lattice vibrational modes as a media.展开更多
Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis w...Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.展开更多
基金Supported by the National Natural Science Foundation of China(21673187,21336009,21576228)National Key Technology Support Program of China(2014BAC10B01).
文摘In this paper, Ni/Zr–Yb–O catalysts with different sodium contents are prepared by a co-precipitation method, using aqueous Na2CO3 solution as a precipitant, and the effect of sodium on the catalyst structure and catalytic performance for syngas methanation is extensively investigated using five Ni/Zr–Yb–O catalysts, containing 0, 0.5, 1.5,4.5 and 13.5 wt% Na^+, those are denoted as Cat-1, Cat-2, Cat-3, Cat-4 and Cat-5 respectively. It is found that the interaction between Ni and support determines the catalytic performance of Ni/Zr–Yb–O and the residual sodium content negatively affects the interaction between Ni and support. Cat-1 exhibits an excellent catalytic performance.During a long run time of 380 h, no deactivation is observed and both CO conversion and CH4 selectivity maintain a level above 90%. However, Cat-3 and Cat-5 suffer rapid deactivation under the same reaction condition. The characterization results indicate the strong interaction between Ni and support enables Cat-1 to possess well dispersed Ni species, resistance to sintering and carbon deposition and thus the excellent catalytic performance. However, the presence of sodium ions over Ni/Zr–Yb–O degrades the interaction between Ni and support and the catalytic performance, especially for the stability. The relative weak interaction between Ni and support results in severe sintering of both ZrO2 and Ni under the reaction condition, carbon deposition and the poor catalytic performance.
基金Supported by the National Natural Science Foundation of China(21576228)
文摘To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.
基金support provided by National Natural Science Foundation of China(21978243).
文摘The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.
基金financial support provided by National Natural Science Foundation of China(21978243)。
文摘A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.
基金financial support provided by the National Natural Science Foundation of China(No.21978243)。
文摘In this work,a strategy of"etching-modification filling-graft copolymerization"was proposed to load the acidic ionic polyionic liquid on the smooth ceramic surface.In this way,commercial ceramic Raschig rings were successfully transformed into the supported catalytic packing for the reactive distillation,and were further evaluated with esterification reaction of ethyl acetate by means of the fully mixed reactor,the ultrasonic destruction,the cyclic catalysis reaction and the lab-scale distillation column experiment.This catalyst coating has good adhesion with the substrate.It can withstand 24 h of ultrasound damage and shows good stability in three cycle catalytic experiments.This kind of coated catalyst has better catalytic activity than the commercial Amberlyst 15 dry.In the lab-scale reaction distillation,the supported catalyst Raschig ring can achieve a higher conversion in comparison with the tea bag catalytic packing of Amberlyst 15 dry under some conditions.
文摘充分考虑碎煤加压熔渣气化(British Gas Lurgi, BGL)炉内的流动特性,将BGL气化炉分为并流段和逆流段,并依此建立了BGL气化炉的一维稳态机理模型.并利用该模型模拟了以烟煤为原料的某工业BGL气化炉,模拟结果与工业实测值误差小于2%,从而验证该模型的正确性.然后在所得到模型的基础上探讨了氧煤比及汽煤比对气化性能的影响.研究表明,氧煤比对碳转化率以及蒸汽分解率的影响较大,随着氧煤比增加,碳转化率增大,蒸汽分解率先增大后减小,当氧煤比为0.47时,蒸汽分解率最大;汽煤比增大有利于水煤气变换反应,但该反应受化学平衡限制,当气化剂充足时,蒸汽的消耗量将小于其增加量,随着汽煤比增大蒸汽分解率逐渐降低.
基金supported by National Natural Science Foundation of China(Grant 11874240)Guangxi Information Materials Key Laboratory Open Research Fund(171007-K)+3 种基金State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF201811)the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD201803)the Natural Science Foundation of Shandong Province,China(No.ZR2016EMM21)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2016RCJJ002).
文摘Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(XRD)and scanning electron microscopy(SEM),respectively.The main crystalline phase is monoclinic Nd(Mg_(1/2)Sn_(1/2))O_(3) with a double perovskite structure(P21/n space group)for the NMS system proved by XRD.The sample at x=0.01 has the best crystallinity and evenly distributed crystal grains observed by SEM.The optimum performances(ε_(r)=19.87,Q×f=41840 GHz,f=12.05 GHz)are obtained at x=0.01.Lattice vibrational modes of the Raman spectra were assigned and illustrated,in detail.The dielectric properties obtained by fitting infrared reflectance spectra with the help of four-parameter semi-quantum model are consistent with the calculated values by microscopic polarization and damping coefficients.The reverse translational vibration of the NdeMgO_(6),the F_(5u)^((5)) mode,provides the greatest contribution to the dielectric response.The relationships between crystal structures and dielectric properties were mainly established using lattice vibrational modes as a media.
基金supported by National Natural Science Foundation of China(Grant 11874240)Shandong Provincial Key Research and Development Program,China(No.2019GGX101060).
文摘Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.