Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
Despite an increase in application spectrum of rare earth elements in agriculture, all studies show that the suitable accumulation of rare earth elements can improve the crop seedling growth, but there is little resea...Despite an increase in application spectrum of rare earth elements in agriculture, all studies show that the suitable accumulation of rare earth elements can improve the crop seedling growth, but there is little research about REEs on physiological mechanisms of crops at reproductive stages. Therefore, this study was conducted to examine the possible potential benefits of lanthanum chloride(LaCl3) on the senescence and grain yield responses of maize. In this study, maize seeds were pre-treated by soaking with LaCl3 at the concentrations of 0(CK), 400(LC1), 800(LC2) and 1200(LC3) μmol/L, to evaluate its effect on the green leaf area, chlorophyll contents, photosynthesis, antioxidants, endogenous hormones in the later crop growth stages. The results show that LC1 and LC2 treatments evidently increase green leaf area, above ground dry biomass, accompanied by a distinct increase in the chlorophyll contents, and photo synthetic capacity, which promote the ear characteristics and grain yield of maize. In addition, LC1 and LC2 treatments simultaneously increase the activities of antioxidants, including superoxide dismutases, catalases, peroxidases, soluble protein, and enhanced levels of auxin, gibberellin and zeatin,following a dose-response tendency. Themalondialdehyde and abscisic acid levels transiently increase with the progression in the growth stage of the crop but are markedly decreased at LC1 and LC2 treatments, while LC3 treatment has no significant effect on malondialdehyde and even accelerates the accumulation of abscisic acid in maize leaves. Our data suggest that seed priming with LaCl3 at a suitable concentration range(400-800 μmol/L) can prolong the functional periods of leaves, increase photosynthetic capacity, enhance antioxidant activity, and alter endogenous hormone levels at reproductive stages, resulting in delaying leaf senescence rate and increasing yield. However, the moderate concentration of LaCl3 for maize is LC2(800 μmol/L), and can be effectively used to improve grain yield of maize.展开更多
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
基金Project supported by the High Technology Research and Development Program of China(2013AA102902)the National Key Technology Support Program of China(2012BAD09B03)
文摘Despite an increase in application spectrum of rare earth elements in agriculture, all studies show that the suitable accumulation of rare earth elements can improve the crop seedling growth, but there is little research about REEs on physiological mechanisms of crops at reproductive stages. Therefore, this study was conducted to examine the possible potential benefits of lanthanum chloride(LaCl3) on the senescence and grain yield responses of maize. In this study, maize seeds were pre-treated by soaking with LaCl3 at the concentrations of 0(CK), 400(LC1), 800(LC2) and 1200(LC3) μmol/L, to evaluate its effect on the green leaf area, chlorophyll contents, photosynthesis, antioxidants, endogenous hormones in the later crop growth stages. The results show that LC1 and LC2 treatments evidently increase green leaf area, above ground dry biomass, accompanied by a distinct increase in the chlorophyll contents, and photo synthetic capacity, which promote the ear characteristics and grain yield of maize. In addition, LC1 and LC2 treatments simultaneously increase the activities of antioxidants, including superoxide dismutases, catalases, peroxidases, soluble protein, and enhanced levels of auxin, gibberellin and zeatin,following a dose-response tendency. Themalondialdehyde and abscisic acid levels transiently increase with the progression in the growth stage of the crop but are markedly decreased at LC1 and LC2 treatments, while LC3 treatment has no significant effect on malondialdehyde and even accelerates the accumulation of abscisic acid in maize leaves. Our data suggest that seed priming with LaCl3 at a suitable concentration range(400-800 μmol/L) can prolong the functional periods of leaves, increase photosynthetic capacity, enhance antioxidant activity, and alter endogenous hormone levels at reproductive stages, resulting in delaying leaf senescence rate and increasing yield. However, the moderate concentration of LaCl3 for maize is LC2(800 μmol/L), and can be effectively used to improve grain yield of maize.