As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concep...As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.展开更多
Stroke is usually treated by systemic thrombolytic therapy if the patient presents within an appropriate time window. There is also widespread interest in the development of thrombolytic agents that can be used in cas...Stroke is usually treated by systemic thrombolytic therapy if the patient presents within an appropriate time window. There is also widespread interest in the development of thrombolytic agents that can be used in cases of delayed presentation. Current agents that can be used in cases of delayed presentation of nerve damage by thrombus. Current systemic thrombolytic therapy is associated with adverse effects such as fibrinogenolysis and bleeding. In an attempt to increase the efficacy, safety, and specificity of thrombolytic therapy, a number of targeted thrombolytic agents have been studied in recent years. This review focuses on the concepts underlying targeted thrombolytic therapy and describes recent drug developments in this field.展开更多
Next point-of-interest(POI)recommendation is an important personalized task in location-based social networks(LBSNs)and aims to recommend the next POI for users in a specific situation with historical check-in data.St...Next point-of-interest(POI)recommendation is an important personalized task in location-based social networks(LBSNs)and aims to recommend the next POI for users in a specific situation with historical check-in data.State-of-the-art studies linearly discretize the user’s spatiotemporal information and then use recurrent neural network(RNN)based models for modeling.However,these studies ignore the nonlinear effects of spatiotemporal information on user preferences and spatiotemporal correlations between user trajectories and candidate POIs.To address these limitations,a spatiotemporal trajectory(STT)model is proposed in this paper.We use the long short-term memory(LSTM)model with an attention mechanism as the basic framework and introduce the user’s spatiotemporal information into the model in encoding.In the process of encoding information,an exponential decay factor is applied to reflect the nonlinear drift of user interest over time and distance.In addition,we design a spatiotemporal matching module in the process of recalling the target to select the most relevant POI by measuring the relevance between the user’s current trajectory and the candidate set.We evaluate the performance of our STT model with four real-world datasets.Experimental results show that our model outperforms existing state-of-the-art methods.展开更多
Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of N...Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of NZVI and displayed better resistance to aggregation and oxidation of NZVI than samples prepared at other temperatures. The NZVI/MC800 material was applied for the elimination of U(Ⅵ) from aqueous solutions. The results suggested that the NZVI/MC800 displayed excellent adsorption capacity(203.94 mg/g)toward U(Ⅵ). The significant adsorption capacity and fast adsorption kinetics were attributed to the presence of well-dispersed NZVI, which could quickly reduce U(Ⅵ) into U(Ⅳ), trapping the guest U(Ⅳ) in the porous biocarbon matrix. The removal of U(Ⅵ) on the NZVI/MC samples was strongly affected by solution pH. The NZVI/MC samples also displayed outstanding reusability for U(Ⅵ) removal after multiple cycles. These findings indicate that NZVI/MC has great potential for remediation of wastewater containing U(Ⅵ).展开更多
基金the National Natural Science Foundationof China(No.31760345).
文摘As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system.
基金supported by the National Natural Science Foundation of China,No.81271692
文摘Stroke is usually treated by systemic thrombolytic therapy if the patient presents within an appropriate time window. There is also widespread interest in the development of thrombolytic agents that can be used in cases of delayed presentation. Current agents that can be used in cases of delayed presentation of nerve damage by thrombus. Current systemic thrombolytic therapy is associated with adverse effects such as fibrinogenolysis and bleeding. In an attempt to increase the efficacy, safety, and specificity of thrombolytic therapy, a number of targeted thrombolytic agents have been studied in recent years. This review focuses on the concepts underlying targeted thrombolytic therapy and describes recent drug developments in this field.
文摘Next point-of-interest(POI)recommendation is an important personalized task in location-based social networks(LBSNs)and aims to recommend the next POI for users in a specific situation with historical check-in data.State-of-the-art studies linearly discretize the user’s spatiotemporal information and then use recurrent neural network(RNN)based models for modeling.However,these studies ignore the nonlinear effects of spatiotemporal information on user preferences and spatiotemporal correlations between user trajectories and candidate POIs.To address these limitations,a spatiotemporal trajectory(STT)model is proposed in this paper.We use the long short-term memory(LSTM)model with an attention mechanism as the basic framework and introduce the user’s spatiotemporal information into the model in encoding.In the process of encoding information,an exponential decay factor is applied to reflect the nonlinear drift of user interest over time and distance.In addition,we design a spatiotemporal matching module in the process of recalling the target to select the most relevant POI by measuring the relevance between the user’s current trajectory and the candidate set.We evaluate the performance of our STT model with four real-world datasets.Experimental results show that our model outperforms existing state-of-the-art methods.
基金supported by the National Natural Science Foundation of China (No.21477133)the Key Lab of Photovoltaic and Energy Conservation Materials,Chinese Academy of Sciences is acknowledged
文摘Nanoscale zerovalent iron/magnetic carbon(NZVI/MC) composites were successfully synthesized by simply calcining yellow pine and iron precursors. NZVI/MC pyrolyzed at 800°C(NZVI/MC800) had a higher percentage of NZVI and displayed better resistance to aggregation and oxidation of NZVI than samples prepared at other temperatures. The NZVI/MC800 material was applied for the elimination of U(Ⅵ) from aqueous solutions. The results suggested that the NZVI/MC800 displayed excellent adsorption capacity(203.94 mg/g)toward U(Ⅵ). The significant adsorption capacity and fast adsorption kinetics were attributed to the presence of well-dispersed NZVI, which could quickly reduce U(Ⅵ) into U(Ⅳ), trapping the guest U(Ⅳ) in the porous biocarbon matrix. The removal of U(Ⅵ) on the NZVI/MC samples was strongly affected by solution pH. The NZVI/MC samples also displayed outstanding reusability for U(Ⅵ) removal after multiple cycles. These findings indicate that NZVI/MC has great potential for remediation of wastewater containing U(Ⅵ).