Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon ...Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.展开更多
Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community...Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation.展开更多
This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-ext...This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.展开更多
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i...Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.展开更多
Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MW...Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MWS10) from an ensemble of 15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS10 are similar in the WNP and South China Sea (SCS); however, the mean of the averaged significant periods in the SCS (1.93 h) is shorter than that in the open water of the WNP (2.83 h). The shorter period in the SCS is examined through an ensemble of simulations, and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit (2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.展开更多
The features of the MJO during two types of El Ni no events are investigated in this paper using the daily NCEP-2reanalysis data, OLR data from NOAA, and Real-time Multivariate MJO index for the period 1979–2012. The...The features of the MJO during two types of El Ni no events are investigated in this paper using the daily NCEP-2reanalysis data, OLR data from NOAA, and Real-time Multivariate MJO index for the period 1979–2012. The results indicate that the MJO exhibits distinct features during eastern Pacific(EP) El Ni no events, as compared to central Pacific(CP) El Ni no events. First, the intensity of the MJO is weakened during EP El Ni no winters from the tropical eastern Indian Ocean to the western Pacific, but enhanced during CP El Ni no winters. Second, the range of the MJO eastward propagation is different during the two types of El Ni no events. During EP El Ni no winters, the MJO propagates eastwards to 120?W, but only to 180?during CP El Ni no winters. Finally, the frequency in eight phases of the MJO may be affected by the two types of El Ni no. Phases 2 and 3 display a stronger MJO frequency during EP El Ni no winters, but phases 4 and 5 during CP El Ni no winters.展开更多
In summer, water vapor over the eastern China monsoon region (ECMR) comes mainly from low latitudes and is modu- lated by tropical cyclone (TC) activity in East Asia (EA). This study examines the variability of ...In summer, water vapor over the eastern China monsoon region (ECMR) comes mainly from low latitudes and is modu- lated by tropical cyclone (TC) activity in East Asia (EA). This study examines the variability of water vapor transport over the ECMR, especially of the moisture inflow via the southern and eastern boundaries. The results of composite and correlation analyses, using data from 1979 to 2010, reveal significant differences in moisture budgets along the boundaries between TC days and non-TC days. Almost 80% of the water vapor transport via the eastern boundary occurs during TC days, while at the southern boundary most inflow occurs on non-TC days. The ratio of the total water vapor transport between TC and non-TC days is about 4:6. In addition, the E1 Nifio-Southem Oscillation (ENSO) exhibits a remarkable influence on moisture trans- port over EA and the contributions of moisture inflow on TC days increase (reduce) in E1 Nifio (La Nifia) years. Moreover, different types of TCs, based on their tracks, have different effects on the moisture budgets along the southern and eastern boundaries. When TCs enter EA (but not the ECMR), they favor the moisture inflow via the eastern boundary and hinder the moisture inflow via the southern boundary. After TCs enter the ECMR, the inhibition of moisture inflow via the southern boundary will be weakened, and more water vapor can be brought into the ECMR. For some recurring TCs with an increase in TC activity in the midlatitudes, the influence is uncertain in different cases. The results herein suggest that TC activity is an important factor that influences the boundary moisture budgets in the ECMR.展开更多
Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features...Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.展开更多
The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional win...The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.展开更多
Climate and climate change have always been a research focus of atmospheric sciences. This paper summaries research efforts, achievements and international contributions of the Chinese scientific community on climate ...Climate and climate change have always been a research focus of atmospheric sciences. This paper summaries research efforts, achievements and international contributions of the Chinese scientific community on climate and climate change over the past 70 years. The review is based on papers published officially in national or international scientific journals,and is organized to cover six aspects:(1) general climate studies;(2) impact of the Qinghai-Tibetan Plateau;(3) impact of the East Asian monsoon;(4) influences of teleconnection oscillation and westerlies;(5) climate dynamics and development of climate models;and(6) climate change. It is, however, to be noted that the present review can not be considered as an exhaustive one, since there is a huge body of literature in the field.展开更多
Approximately 7000 m^3 of aged refuse (AR) with a placement of over eight years was excavated from Shanghai Refuse Landfill, the largest landfill in China, and used for the construction of a two-stage bioreactor (A...Approximately 7000 m^3 of aged refuse (AR) with a placement of over eight years was excavated from Shanghai Refuse Landfill, the largest landfill in China, and used for the construction of a two-stage bioreactor (AR biofilter) media for the biological treatment of 100 m3 of refuse landfill leachate. It was found that over 64% of COD, 96.9%-99.8% of NH4^+-N, and 95.8%-99.8% of BOD5 could be removed by the AR biofilter, when the leachate with initial COD, BOD5, and NH4^+-N concentrations were 986-4128 mg/L, 264--959 mg/L,m and 538-1583 mg/L, respectively. The corresponding concentrations in the effluent were reduced to below 30(000 mg/L, 2-12 mg/L, and 10-20 mg/L, respectively. The effluent was clear and pale yellow with suspended solid below 150 mg/L and color below 150 Pt/Co degree. Meanwhile, the total nitrogen removal was only 49%-63%, indicating a relative poor denitrification capacity of AR biofilter. The effluent pH was neutral and the population of Escherichia coli was less than 10^-1 CFU/mL. Hence, it was considered that the demonstration project can work well for the effective treatment of leachate.展开更多
Over the past few decades,extreme tropical cyclone(TC)events have become more common.During the 2019 typhoon season in the western North Pacific(WNP),7 super typhoons hit East Asia.Super Typhoon Lekima(2019)caused eco...Over the past few decades,extreme tropical cyclone(TC)events have become more common.During the 2019 typhoon season in the western North Pacific(WNP),7 super typhoons hit East Asia.Super Typhoon Lekima(2019)caused economic loss of at least RMB 51.53 billion yuans and 56 fatalities in the China's Mainland.展开更多
Extreme Meiyu rainfall in 2020,starting from early June to the end of July,has occurred over the Yangtze River valley(YRV),with record-breaking accumulated precipitation amount since 1961.The present study aims to exa...Extreme Meiyu rainfall in 2020,starting from early June to the end of July,has occurred over the Yangtze River valley(YRV),with record-breaking accumulated precipitation amount since 1961.The present study aims to examine the possible effect of sea surface temperature(SST)on the YRV rainfall in Meiyu season from the interdecadal perspective.The results indicate that YRV rainfall in June exhibits more significant variability on interdecadal time scale than that in July.The interdecadal-filtered atmospheric circulation in June,compared with the counterpart in July,shows a more predominant and better-organized Western North Pacific Anticyclone(WNPAC)anomaly,which could transport abundant moisture to the YRV by anomalous southwesterly prevailing in northwestern flank of anomalous WNPAC.Both observation and numerical experiment indicate that the interdecadal change of the SST anomaly in tropical western Indian Ocean(TWI)from preceding May to June can significantly affect the anomalous WNPAC,leading to enhanced YRV rainfall in June.The TWI SST anomaly shifts from a cold phase to a warm phase around the early 2000s,with a magnitude of 0.7°C in 2020,which implies that such interdecadal warming might partly contribute to the heavy rainfall in June 2020 by providing a large-scale favorable background flow.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 42175066,41875087,42030601,and 42105017]the Shanghai Municipal Natural Science Fund[grant number 20ZR1407400]the Shanghai Pujiang Program[grant number 20PJ1401600]。
文摘Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.
基金supported jointly by the National Key Research and Development Program(Grant No.2016YFA0600604)the National Natural Science Foundation of China(Grant No.41721004)+1 种基金the Chinese Academy of Sciences Key Research Program of Frontier Sciences(Grant No.QYZDY-SSW-DQC024)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation.
基金supported by National Key R&D Program of China (Grant No. 2016YFA0600601)the National Natural Science Foundation of China (Grant Nos. 41605027, 41721004, 41530530 and 41731173)+1 种基金the Leading Talents of Guangdong Province Program, the Pioneer Hundred Talents Program of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities
文摘This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.
基金study was supported by the National Natural Science Foundation of China(Grant Nos.42230605 and 41721004).
文摘Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41405048, 41675043, 41375050, 41205032 and 41775094)Independent Research Project Program of State Key Laboratory of Tropical Oceanography (Grant No. LTOZZ1603)
文摘Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MWS10) from an ensemble of 15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS10 are similar in the WNP and South China Sea (SCS); however, the mean of the averaged significant periods in the SCS (1.93 h) is shorter than that in the open water of the WNP (2.83 h). The shorter period in the SCS is examined through an ensemble of simulations, and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit (2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.
基金jointly supported by National Natural Science Foundation of China(Grant No.41530530)the National Key Basic Research and Development Projects of China(Grant No.2014CB953901)
文摘The features of the MJO during two types of El Ni no events are investigated in this paper using the daily NCEP-2reanalysis data, OLR data from NOAA, and Real-time Multivariate MJO index for the period 1979–2012. The results indicate that the MJO exhibits distinct features during eastern Pacific(EP) El Ni no events, as compared to central Pacific(CP) El Ni no events. First, the intensity of the MJO is weakened during EP El Ni no winters from the tropical eastern Indian Ocean to the western Pacific, but enhanced during CP El Ni no winters. Second, the range of the MJO eastward propagation is different during the two types of El Ni no events. During EP El Ni no winters, the MJO propagates eastwards to 120?W, but only to 180?during CP El Ni no winters. Finally, the frequency in eight phases of the MJO may be affected by the two types of El Ni no. Phases 2 and 3 display a stronger MJO frequency during EP El Ni no winters, but phases 4 and 5 during CP El Ni no winters.
基金supported by the National Natural Science Foundation of China [grant numbers 42030601 and 42205019]supported by a project funded by the China Postdoctoral Science Foundation [grant number 2022M710715]
基金supported by the National Key Basic Research and Development Projects of China (Grant Nos. 2016YFA0600601 and 2014CB953901)the National Natural Science Foundation of China (Grant No. 41375096)
文摘In summer, water vapor over the eastern China monsoon region (ECMR) comes mainly from low latitudes and is modu- lated by tropical cyclone (TC) activity in East Asia (EA). This study examines the variability of water vapor transport over the ECMR, especially of the moisture inflow via the southern and eastern boundaries. The results of composite and correlation analyses, using data from 1979 to 2010, reveal significant differences in moisture budgets along the boundaries between TC days and non-TC days. Almost 80% of the water vapor transport via the eastern boundary occurs during TC days, while at the southern boundary most inflow occurs on non-TC days. The ratio of the total water vapor transport between TC and non-TC days is about 4:6. In addition, the E1 Nifio-Southem Oscillation (ENSO) exhibits a remarkable influence on moisture trans- port over EA and the contributions of moisture inflow on TC days increase (reduce) in E1 Nifio (La Nifia) years. Moreover, different types of TCs, based on their tracks, have different effects on the moisture budgets along the southern and eastern boundaries. When TCs enter EA (but not the ECMR), they favor the moisture inflow via the eastern boundary and hinder the moisture inflow via the southern boundary. After TCs enter the ECMR, the inhibition of moisture inflow via the southern boundary will be weakened, and more water vapor can be brought into the ECMR. For some recurring TCs with an increase in TC activity in the midlatitudes, the influence is uncertain in different cases. The results herein suggest that TC activity is an important factor that influences the boundary moisture budgets in the ECMR.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600601]the Guangdong Basic and Applied Basic Research Foundation[grant number 2020A1515011572]the National Natural Science Foundation of China[grant number 41605027]。
文摘Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.
基金jointly supported by the National Key Research and Development Program of China[grant number 2016YFA0600601]the National Natural Science Foundation of China[grant numbers 42030601 and 41875087]。
文摘The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.
基金supported by the National Natural Science Foundation of China(Grant No.41521004)the China University Research Talents Recruitment Program(Grant No.B13045)the Fundamental Research Funds for the Central Universities(Grant No.LZUJBKY-2019-kb30)
文摘Climate and climate change have always been a research focus of atmospheric sciences. This paper summaries research efforts, achievements and international contributions of the Chinese scientific community on climate and climate change over the past 70 years. The review is based on papers published officially in national or international scientific journals,and is organized to cover six aspects:(1) general climate studies;(2) impact of the Qinghai-Tibetan Plateau;(3) impact of the East Asian monsoon;(4) influences of teleconnection oscillation and westerlies;(5) climate dynamics and development of climate models;and(6) climate change. It is, however, to be noted that the present review can not be considered as an exhaustive one, since there is a huge body of literature in the field.
文摘Approximately 7000 m^3 of aged refuse (AR) with a placement of over eight years was excavated from Shanghai Refuse Landfill, the largest landfill in China, and used for the construction of a two-stage bioreactor (AR biofilter) media for the biological treatment of 100 m3 of refuse landfill leachate. It was found that over 64% of COD, 96.9%-99.8% of NH4^+-N, and 95.8%-99.8% of BOD5 could be removed by the AR biofilter, when the leachate with initial COD, BOD5, and NH4^+-N concentrations were 986-4128 mg/L, 264--959 mg/L,m and 538-1583 mg/L, respectively. The corresponding concentrations in the effluent were reduced to below 30(000 mg/L, 2-12 mg/L, and 10-20 mg/L, respectively. The effluent was clear and pale yellow with suspended solid below 150 mg/L and color below 150 Pt/Co degree. Meanwhile, the total nitrogen removal was only 49%-63%, indicating a relative poor denitrification capacity of AR biofilter. The effluent pH was neutral and the population of Escherichia coli was less than 10^-1 CFU/mL. Hence, it was considered that the demonstration project can work well for the effective treatment of leachate.
基金supported by the National Natural Science Foundation of China (Grant No. 41875117)the Youth Innovation Promotion Association CAS (Grant No. 2017106)
文摘Over the past few decades,extreme tropical cyclone(TC)events have become more common.During the 2019 typhoon season in the western North Pacific(WNP),7 super typhoons hit East Asia.Super Typhoon Lekima(2019)caused economic loss of at least RMB 51.53 billion yuans and 56 fatalities in the China's Mainland.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600601)the National Natural Science Foundation of China(Grant Nos.41905072,41530530&41875087).
文摘Extreme Meiyu rainfall in 2020,starting from early June to the end of July,has occurred over the Yangtze River valley(YRV),with record-breaking accumulated precipitation amount since 1961.The present study aims to examine the possible effect of sea surface temperature(SST)on the YRV rainfall in Meiyu season from the interdecadal perspective.The results indicate that YRV rainfall in June exhibits more significant variability on interdecadal time scale than that in July.The interdecadal-filtered atmospheric circulation in June,compared with the counterpart in July,shows a more predominant and better-organized Western North Pacific Anticyclone(WNPAC)anomaly,which could transport abundant moisture to the YRV by anomalous southwesterly prevailing in northwestern flank of anomalous WNPAC.Both observation and numerical experiment indicate that the interdecadal change of the SST anomaly in tropical western Indian Ocean(TWI)from preceding May to June can significantly affect the anomalous WNPAC,leading to enhanced YRV rainfall in June.The TWI SST anomaly shifts from a cold phase to a warm phase around the early 2000s,with a magnitude of 0.7°C in 2020,which implies that such interdecadal warming might partly contribute to the heavy rainfall in June 2020 by providing a large-scale favorable background flow.