Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th...Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.展开更多
Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Curren...Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection(HAR)that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure,in which process the MHCⅡmolecule plays critical roles.Methods:Thus,we generate a 4-gene(GGTA1,CMAH,β4GalNT2,and CIITA)knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously.Results:We successfully obtained 4KO piglets with deficiency in all alleles of genes,and at cellular and tissue levels.Additionally,the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping.Piglets have survived for more than one year in the barrier,and also survived for more than 3 months in the conventional environment,suggesting that the piglets without MHCⅡcan be raised in the barrier and then gradually mated in the conventional environment.Conclusions:4KO piglets have lower immunogenicity,are safe in genomic level,and are easier to breed than the model with both MHCⅠandⅡdeletion.展开更多
Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predic...Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across diff erent seasons in the future(2050s and 2100s)under the climate scenarios of Representative Concentration Pathway(RCP)4.5 and RCP8.5.Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations.Among the four seasons,the suitable habitat for this species will be signifi cantly reduced in summer,with loss rates ranging from 45.23%(RCP4.5)to 88.26%(RCP.8.5)by the 2100s.The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea,while a slight increase in habitat will occur in the northern part of the Bohai Sea.These fi ndings provide an information forecast for this species in the future.Such forecast will be helpful in improving fi shery management under climate change.展开更多
Loquat(Eriobotrya japonica Lindl.)is an evergreen fruit tree species of the Rosaceae,and its unique flowering time greatly hinders its production.To explore the artificial regulation of loquat flowering time,we remove...Loquat(Eriobotrya japonica Lindl.)is an evergreen fruit tree species of the Rosaceae,and its unique flowering time greatly hinders its production.To explore the artificial regulation of loquat flowering time,we removed the main inflorescence(by cutting it)to induce reflowering.For different loquat tree cultivars with different stages,the inflorescence was removed by cutting the main floral axis at two alternative positions:the upper or the lower position beneath the inflorescence,and it was found that the proportion of reflowering resulting from removing the upper position of the main floral axis of yellow-flesh loquat cultivars during the full-bloom stage was the highest.In addition,compared with those of the normal-growing panicles,the number of flower buds and branch axes of the reflowering panicles decreased significantly after cutting.Importantly,these newly produced inflorescences flowered 2–4 months later than normal-growing inflorescences did,effectively prolonging both the flowering and fruiting time.In addition,qRT-PCR results showed that EjFT1,EjFT2,EjAP1–1 and EjAP1–2 were highly expressed in the floral axis.These findings highlighted a new method for extending the production cycle of loquat and provided a reference for the flowering regulation of loquat and other economically important fruit tree species.展开更多
Portunus trituberculatus is an ide al model for elucidating crustacean genetic networks.Here we combined single molecule real-time(SMRT)sequencing and Illumina RNA-seq to characterize the coding genes,non-coding RNAs ...Portunus trituberculatus is an ide al model for elucidating crustacean genetic networks.Here we combined single molecule real-time(SMRT)sequencing and Illumina RNA-seq to characterize the coding genes,non-coding RNAs and pseudogenes and further to improve the genome annotation information of P.tritub erculatus.In this study,we assembled 9694 non-redundancy full-length transcripts,and 658737307-bp repetitive sequences were identified in the P.trituberculatus full-length transcriptome.We also predicted the P.tritub erculatus genome structure based on full-length transcripts,including 18602 genes,28686 non-coding RNAs,1407 pseudogenes,740 motif,and 26434 domain.Meanwhile,14460,10211,5412,7314,and 14448 genes had significant matches with sequences in the NR,KOG,GO,KEGG,and TrEMBL database,respectively.Overall,our work firstly provided the long-read transcriptome and we believed that these data are very necessary to improve the annotation information of P.trituberculatus genome structure,and useful information for the future studies on evolution and physiological regulation of P.trituberculatus.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated gene(Cas) system is continually optimized to achieve the most efficient gene editing effect. The Cas12i^(Max), a Cas12i variant, ...The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated gene(Cas) system is continually optimized to achieve the most efficient gene editing effect. The Cas12i^(Max), a Cas12i variant, exhibits powerful DNA editing activity and enriches the gene editing toolbox. However, the application of Cas12i^(Max)in large domestic animals has not yet been reported. To verify the efficiency and feasibility of multiple gene editing in large animals, we generated porcine fibroblasts with simultaneous knockouts of IGF2, ANPEP, CD163,and MSTN via Cas12i^(Max)in one step. Phenotypically stable pigs were created through somatic cell nuclear transfer technology. They exhibited improved growth performance and muscle quality. Furthermore, we simultaneously edited three genes in bovine fibroblasts. A knockout of MSTN and PRNP was created and the amino acid Q-G in CD18 was precisely substituted. Meanwhile, no off-target phenomenon was observed by sum-type analysis or off-target detection. These results verified the effectiveness of Cas12i^(Max)for gene editing in livestock animals and demonstrated the potential application of Cas12i^(Max)in the field of animal trait improvement for agricultural production.展开更多
The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhance...The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhances the capability of providing a dependable guarantee for success-ful accomplishment of flight missions.Nonetheless,assuring reliability in scene matching encoun-ters significant challenges in areas characterized by repetitive or weak textures.To tackle these challenges,we propose a novel method to assess the reliability of scene matching based on the dis-tinctive characteristics of correlation peaks.The proposed method leverages the fact that the sim-ilarity of the optimal matching result is significantly higher than that of the surrounding area,and three novel indicators(e.g.,relative height,slope of a correlation peak,and ratio of a sub peak to the main peak)are determined to conjointly evaluate the reliability of scene matching.The pro-posed method entails matching a real-time image with a reference image to generate a correlation surface.A correlation peak is then obtained by extracting the portion of the correlation surface exhibiting a significant gradient.Additionally,the matching reliability is determined by considering the relative height,slope,and ratio of the peak collectively.Exhaustive experimental results with two sets of data demonstrate that the proposed method significantly outperforms traditional approaches in terms of precision,recall,and F1-score.These experiments also establish the efficacy of the proposed method in achieving reliable matching in challenging environments characterized by repetitive and weak textures.This enhancement holds the potential to significantly elevate scene-matching-based navigation.展开更多
We detail the generation of a pulsed atomic oxygen(AO)broad beam with a high flux-density via collision-induced dissociation of O_(2) to support practical industrial exploitation of AOs,particularly for facilitating 2...We detail the generation of a pulsed atomic oxygen(AO)broad beam with a high flux-density via collision-induced dissociation of O_(2) to support practical industrial exploitation of AOs,particularly for facilitating 2-dimenstional oxidation/etching at a fast rate of one-monolayer per second in an area≥1000 cm².This innovation fuses the following interdisciplinary concepts:(a)a high density of O^(*) can be produced in an electron-cyclotron-resonance(ECR)O2 plasma;(b)o^(*) can be extracted and accelerated with an aperture-electrode in the plasma.展开更多
Immune-checkpoint inhibitors(ICBs),in addition to targeting CTLA-4,PD-1,and PD-L1,novel targeting LAG-3 drugs have also been approved in clinical application.With the widespread use of the drug,we must deeply analyze ...Immune-checkpoint inhibitors(ICBs),in addition to targeting CTLA-4,PD-1,and PD-L1,novel targeting LAG-3 drugs have also been approved in clinical application.With the widespread use of the drug,we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect.Over the past decades,these agents have demonstrated dramatic efficacy,especially in patients with melanoma and non-small cell lung cancer(NSCLC).Nonetheless,in the field of a broad concept of solid tumours,non-specific indications,inseparable immune response and side effects,unconfirmed progressive disease,and complex regulatory networks of immune resistance are four barriers that limit its widespread application.Fortunately,the successful clinical trials of novel ICB agents and combination therapies,the advent of the era of oncolytic virus gene editing,and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently.In this review,we enumerate the mechanisms of each immune checkpoint targets,associations between ICB with tumour mutation burden,key immune regulatory or resistance signalling pathways,the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety.Finally,we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.展开更多
Horizontal gene transfer(HGT)is a common occurrence across all domains of life.However,most HGT events were reported between single-celled organisms or parasites and hosts(Van Etten and Bhattacharya 2020).A type II an...Horizontal gene transfer(HGT)is a common occurrence across all domains of life.However,most HGT events were reported between single-celled organisms or parasites and hosts(Van Etten and Bhattacharya 2020).A type II antifreeze protein(AFP)gene was the first and sole evidence of HGT direct vertebrate-to-vertebrate DNA transmission.AFP is only found in 3 widely separated branches of teleost fishes(herring,sea raven,and smelts),sharing amino acid similarity up to 80%(Graham et al.2008).展开更多
A multi-grain phase field model coupled with thermodynamic calculation was adopted to describe the dendritic growth in pressurized solidification of Mg-A1 alloy during squeeze casting, in which the effects of the pres...A multi-grain phase field model coupled with thermodynamic calculation was adopted to describe the dendritic growth in pressurized solidification of Mg-A1 alloy during squeeze casting, in which the effects of the pressure on the Gibbs free energy and chemical potential of solid and liquid phases, the solute diffusion coefficient, and the solute partition coefficient were considered. The individual effect of solute diffusion coefficient, and the Gibbs free energy on the dendritic growth was studied. With the compar- ison of the dendritic growth under atmospheric and elevated pressures, the effect of pressure on the microstructure evolution was discussed. The results showed that the grains are refined, the dendritic growth rate tends to increase and the secondary dendrite arms are more developed as the pressure is increased from 0.1 to 100 MPa, which showed a good agreement with the experimental results of direct squeeze casting of Mg-AI alloy. As the pressure increases, the largest dendritic growth rate can be obtained under the pressure between 200 and 250 MPa, while the growth rate decreases with a further increase of pressure.展开更多
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
基金supported by the National Natural Science Foundation of China(Grant No.32101489)Forestry Science and Technology Innovation Program of Hunan Province(Grant No.XLK202101-2)Science and Technology Innovation Platform and Talent Program of Hunan Province(Grant Nos.2023RC3164,2021NK1007)。
文摘Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.
基金National Key Research and Development Program,Grant/Award Number:2019YFA0903800,2021YFA0805701,2021YFA0805905 and 2022YFA1103603CAS Project for Young Scientists in Basic Research,Grant/Award Number:YSBR-012+2 种基金STI 2030-Major Project,Grant/Award Number:2023ZD0407503National Natural Science Foundation of China,Grant/Award Number:32071456 and 82241224Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA16030000。
文摘Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection(HAR)that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure,in which process the MHCⅡmolecule plays critical roles.Methods:Thus,we generate a 4-gene(GGTA1,CMAH,β4GalNT2,and CIITA)knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously.Results:We successfully obtained 4KO piglets with deficiency in all alleles of genes,and at cellular and tissue levels.Additionally,the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping.Piglets have survived for more than one year in the barrier,and also survived for more than 3 months in the conventional environment,suggesting that the piglets without MHCⅡcan be raised in the barrier and then gradually mated in the conventional environment.Conclusions:4KO piglets have lower immunogenicity,are safe in genomic level,and are easier to breed than the model with both MHCⅠandⅡdeletion.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604902,2017YFA0604904)the Zhejiang Provincial Natural Science Foundation of China(No.LR21D060003)+1 种基金the New Talent Program for College Students in Zhejiang Province(No.2016R411011)the Innovation Training Program for University students of Zhejiang Ocean University(No.2020-03)。
文摘Over the last decades,the species distribution model(SDM)has become an essential tool for studying the potential eff ects of climate change on species distribution.In this study,an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across diff erent seasons in the future(2050s and 2100s)under the climate scenarios of Representative Concentration Pathway(RCP)4.5 and RCP8.5.Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations.Among the four seasons,the suitable habitat for this species will be signifi cantly reduced in summer,with loss rates ranging from 45.23%(RCP4.5)to 88.26%(RCP.8.5)by the 2100s.The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea,while a slight increase in habitat will occur in the northern part of the Bohai Sea.These fi ndings provide an information forecast for this species in the future.Such forecast will be helpful in improving fi shery management under climate change.
基金supported by Shaoguan City Science and Technology Planning Project(Social Development Direction-Supporting Scientific Research Workers Project)(Grant No.200811094530739)the Key Realm R&D Program of Guang Dong Provide(Grant No.2018B020202011)+2 种基金Open Fund of Key laboratory of Loquat Germplasm Innovation and Utilization(Putian University)Fujian Province University(Grant No.2019005)Guangdong Province College Students’Innovative and Entrepreneurial Training Program(Grant No.S202010576014X)。
文摘Loquat(Eriobotrya japonica Lindl.)is an evergreen fruit tree species of the Rosaceae,and its unique flowering time greatly hinders its production.To explore the artificial regulation of loquat flowering time,we removed the main inflorescence(by cutting it)to induce reflowering.For different loquat tree cultivars with different stages,the inflorescence was removed by cutting the main floral axis at two alternative positions:the upper or the lower position beneath the inflorescence,and it was found that the proportion of reflowering resulting from removing the upper position of the main floral axis of yellow-flesh loquat cultivars during the full-bloom stage was the highest.In addition,compared with those of the normal-growing panicles,the number of flower buds and branch axes of the reflowering panicles decreased significantly after cutting.Importantly,these newly produced inflorescences flowered 2–4 months later than normal-growing inflorescences did,effectively prolonging both the flowering and fruiting time.In addition,qRT-PCR results showed that EjFT1,EjFT2,EjAP1–1 and EjAP1–2 were highly expressed in the floral axis.These findings highlighted a new method for extending the production cycle of loquat and provided a reference for the flowering regulation of loquat and other economically important fruit tree species.
基金Supported by the National Key Research and Development Program of China(No.2017YFA0604904)the Zhejiang Provincial Natural Science Foundation of China(No.LR21D060003)。
文摘Portunus trituberculatus is an ide al model for elucidating crustacean genetic networks.Here we combined single molecule real-time(SMRT)sequencing and Illumina RNA-seq to characterize the coding genes,non-coding RNAs and pseudogenes and further to improve the genome annotation information of P.tritub erculatus.In this study,we assembled 9694 non-redundancy full-length transcripts,and 658737307-bp repetitive sequences were identified in the P.trituberculatus full-length transcriptome.We also predicted the P.tritub erculatus genome structure based on full-length transcripts,including 18602 genes,28686 non-coding RNAs,1407 pseudogenes,740 motif,and 26434 domain.Meanwhile,14460,10211,5412,7314,and 14448 genes had significant matches with sequences in the NR,KOG,GO,KEGG,and TrEMBL database,respectively.Overall,our work firstly provided the long-read transcriptome and we believed that these data are very necessary to improve the annotation information of P.trituberculatus genome structure,and useful information for the future studies on evolution and physiological regulation of P.trituberculatus.
基金supported by the National Key Research and Development Program of China(2018YFE0201100,2021YFA0805905,2021YFA0805701,2022YFA1103101)the National Natural Science Foundation of China(32102549)+3 种基金the National Key R&D Program of Ningxia(2021BEF02023)the China Agriculture Research System of MOF and MARA(CARS-36)the Agricultural Science and Technology Innovation Program(ASTIP-IAS06)the project from The Xinjiang Production and Construction Corps and Foundation of State Key Laboratory for Sheep Genetic Improvement and Healthy Production(2021ZD04)。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated gene(Cas) system is continually optimized to achieve the most efficient gene editing effect. The Cas12i^(Max), a Cas12i variant, exhibits powerful DNA editing activity and enriches the gene editing toolbox. However, the application of Cas12i^(Max)in large domestic animals has not yet been reported. To verify the efficiency and feasibility of multiple gene editing in large animals, we generated porcine fibroblasts with simultaneous knockouts of IGF2, ANPEP, CD163,and MSTN via Cas12i^(Max)in one step. Phenotypically stable pigs were created through somatic cell nuclear transfer technology. They exhibited improved growth performance and muscle quality. Furthermore, we simultaneously edited three genes in bovine fibroblasts. A knockout of MSTN and PRNP was created and the amino acid Q-G in CD18 was precisely substituted. Meanwhile, no off-target phenomenon was observed by sum-type analysis or off-target detection. These results verified the effectiveness of Cas12i^(Max)for gene editing in livestock animals and demonstrated the potential application of Cas12i^(Max)in the field of animal trait improvement for agricultural production.
基金supported by the National Natural Science Foundation of China (No.42271446).
文摘The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhances the capability of providing a dependable guarantee for success-ful accomplishment of flight missions.Nonetheless,assuring reliability in scene matching encoun-ters significant challenges in areas characterized by repetitive or weak textures.To tackle these challenges,we propose a novel method to assess the reliability of scene matching based on the dis-tinctive characteristics of correlation peaks.The proposed method leverages the fact that the sim-ilarity of the optimal matching result is significantly higher than that of the surrounding area,and three novel indicators(e.g.,relative height,slope of a correlation peak,and ratio of a sub peak to the main peak)are determined to conjointly evaluate the reliability of scene matching.The pro-posed method entails matching a real-time image with a reference image to generate a correlation surface.A correlation peak is then obtained by extracting the portion of the correlation surface exhibiting a significant gradient.Additionally,the matching reliability is determined by considering the relative height,slope,and ratio of the peak collectively.Exhaustive experimental results with two sets of data demonstrate that the proposed method significantly outperforms traditional approaches in terms of precision,recall,and F1-score.These experiments also establish the efficacy of the proposed method in achieving reliable matching in challenging environments characterized by repetitive and weak textures.This enhancement holds the potential to significantly elevate scene-matching-based navigation.
基金support from National Natural Science Foundation of China(NSFC No.22008007)Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK21BEO10)Foshan Science and technology Innovation Project(No.2018IT100363)。
文摘We detail the generation of a pulsed atomic oxygen(AO)broad beam with a high flux-density via collision-induced dissociation of O_(2) to support practical industrial exploitation of AOs,particularly for facilitating 2-dimenstional oxidation/etching at a fast rate of one-monolayer per second in an area≥1000 cm².This innovation fuses the following interdisciplinary concepts:(a)a high density of O^(*) can be produced in an electron-cyclotron-resonance(ECR)O2 plasma;(b)o^(*) can be extracted and accelerated with an aperture-electrode in the plasma.
基金This study was supported by the National Natural Science Foundation of China(81974414,81772788,81873430).
文摘Immune-checkpoint inhibitors(ICBs),in addition to targeting CTLA-4,PD-1,and PD-L1,novel targeting LAG-3 drugs have also been approved in clinical application.With the widespread use of the drug,we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect.Over the past decades,these agents have demonstrated dramatic efficacy,especially in patients with melanoma and non-small cell lung cancer(NSCLC).Nonetheless,in the field of a broad concept of solid tumours,non-specific indications,inseparable immune response and side effects,unconfirmed progressive disease,and complex regulatory networks of immune resistance are four barriers that limit its widespread application.Fortunately,the successful clinical trials of novel ICB agents and combination therapies,the advent of the era of oncolytic virus gene editing,and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently.In this review,we enumerate the mechanisms of each immune checkpoint targets,associations between ICB with tumour mutation burden,key immune regulatory or resistance signalling pathways,the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety.Finally,we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
基金supported by the National Key Research and Development Program of China(2017YFA0604904)the Zhejiang Provincial Natural Science Foundation of China(LR21D060003)to Z.H.
文摘Horizontal gene transfer(HGT)is a common occurrence across all domains of life.However,most HGT events were reported between single-celled organisms or parasites and hosts(Van Etten and Bhattacharya 2020).A type II antifreeze protein(AFP)gene was the first and sole evidence of HGT direct vertebrate-to-vertebrate DNA transmission.AFP is only found in 3 widely separated branches of teleost fishes(herring,sea raven,and smelts),sharing amino acid similarity up to 80%(Graham et al.2008).
基金funded by the National Natural Science Foundation of China (Grant No.51175291)Tsinghua University Initiative Scientific Research Program(Grant No.2011Z02160)the State Key Laboratory of Automotive Safety and Energy,Tsinghua University under the contract 2013XC-A-01
文摘A multi-grain phase field model coupled with thermodynamic calculation was adopted to describe the dendritic growth in pressurized solidification of Mg-A1 alloy during squeeze casting, in which the effects of the pressure on the Gibbs free energy and chemical potential of solid and liquid phases, the solute diffusion coefficient, and the solute partition coefficient were considered. The individual effect of solute diffusion coefficient, and the Gibbs free energy on the dendritic growth was studied. With the compar- ison of the dendritic growth under atmospheric and elevated pressures, the effect of pressure on the microstructure evolution was discussed. The results showed that the grains are refined, the dendritic growth rate tends to increase and the secondary dendrite arms are more developed as the pressure is increased from 0.1 to 100 MPa, which showed a good agreement with the experimental results of direct squeeze casting of Mg-AI alloy. As the pressure increases, the largest dendritic growth rate can be obtained under the pressure between 200 and 250 MPa, while the growth rate decreases with a further increase of pressure.