Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibe...Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibers have demonstrated their prominent values in biomedical applications.This review comprehensively summarizes the relevant research progress of sustainable microfibers from natural products and their biomedical applications.To begin,common natural elements are introduced for the microfiber fabrication.After that,the focus is on the specific fabri-cation technology and process.Subsequently,biomedical applications of sustainable microfibers are discussed in detail.Last but not least,the main challenges during the development process are summarized,followed by a vision for future development opportunities.展开更多
Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reactio...Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reaction of their active sites with large-sized anions.Herein,we demonstrate the application of a small molecule with rigid spirofluorene structu re,namely 2,2’,7,7’-tetrakis(diphenylamine)-9,9’-spirobifluorene(Spiro-TAD),as a cathode material for lithium dual-ion batteries.The inherent sterical structure endows the Spiro-TAD with good chemical stability and large internal space for fast diffusion kinetics of anions in the organic electrolyte.As a result,the Spiro-TAD electrode shows significant insolubility and less steric hindrance,and gives a high actual capacity of 109 mA h g^(-1)(active groups utilization ratio approximately 100%) at 50 mA g^(-1)with a high discharge voltage of 3.6 V(vs.Li+/Li),excellent rate capability(60 mA h g^(-1)at 2000 mA g^(-1)) and extremely stable cycling life(98.4% capacity retention after 1400 cycles at 500 mA g^(-1)) in half cells.Such good electrochemical performance is attributed to the robust and rapid adsorption/desorption of ClO4-anions,which can be proved by the in-situ FTIR and XPS.Moreover,an all-organic lithium dual-ion battery(a-OLDIBs) is constructed using the Spiro-TAD as cathode and 3,4,9,10-Perylenetetracarboxylic diimide(PTCDI) as anode and displays long-term cycling performance of 87.5 mA h g^(-1)after 800 cycles.This study will stimulate further developments in designing all organic battery systems.展开更多
The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via inco...The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.展开更多
Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considerin...Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.展开更多
The transformation of scientific and technological achievements concerning tropical agriculture has the characteristics of high risk and high return. Based on the characteristics of transformation of scientific and te...The transformation of scientific and technological achievements concerning tropical agriculture has the characteristics of high risk and high return. Based on the characteristics of transformation of scientific and technological achievements concerning tropical agriculture,this paper analyzes the risk factors during the transformation of scientific and technological achievements concerning tropical agriculture. In accordance with the current situation of low transformation rate of scientific and technological achievements concerning tropical agriculture in China,this paper proposes the measures to avoid the risks in the transformation of scientific and technological achievements concerning tropical agriculture and enhance the transformation rate of scientific and technological achievements concerning tropical agriculture.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
As a promising new micro-physiological system,organ-on-a-chip has been widely utilized for in vitro pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delic...As a promising new micro-physiological system,organ-on-a-chip has been widely utilized for in vitro pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delicate replication of in vivo-like microenvironment.To better observe the biological processes,a variety of sensors have been integrated to realize in-situ,realtime,and sensitive monitoring of critical signals for organs development and disease modeling.Herein,we discuss the recent research advances made with respect to sensors-integrated organ-on-a-chip in this overall review.Firstly,we briefly explore the underlying fabrication procedures of sensors within microfluidic platforms and several classifications of sensory principles.Then,emphasis is put on the highlighted applications of different types of organ-on-a-chip incorporated with various sensors.Last but not least,perspective on the remaining challenges and future development of sensors-integrated organ-on-a-chip are presented.展开更多
水系锌碘电池(AZIBs)是一种非常受欢迎的绿色储能技术,但它的能量密度极大地限制了其应用.在此,我们报道了一种高能量密度的可充电AZIBs,通过将高质量碘锚定到具有大微孔体积和富吡啶氮掺杂的独特分级多孔碳中来实现.多孔碳结合了微孔...水系锌碘电池(AZIBs)是一种非常受欢迎的绿色储能技术,但它的能量密度极大地限制了其应用.在此,我们报道了一种高能量密度的可充电AZIBs,通过将高质量碘锚定到具有大微孔体积和富吡啶氮掺杂的独特分级多孔碳中来实现.多孔碳结合了微孔对碘的强约束和氮掺杂对碘的强化学吸附的优点,可使碘的负载量高达61.6 wt%.密度泛函理论计算和实验研究表明,氮掺杂所赋予的丰富活性位点能促进AZIBs的氧化还原动力学,吡啶氮掺杂对AZIBs的吸附可逆转化比普通氮掺杂更有效.高负载碘电极在1.0 C时表现出219.3 mA h g^(-1)的高容量,优异的速率性能,以及优越的循环稳定性,在5.0 C时,循环10,000次内的容量衰减极低,每圈仅为0.00147%.由三节电池串联的初步装置,能量密度高,按电池总质量计算可达72.6 W h kg^(-1),几乎是商用铅酸和镍-镉电池能量密度的两倍.该水系电池的高能量密度和长循环寿命使其在大规模储能应用领域具有巨大潜力.展开更多
Natural biomaterials have been widely applied in wound treatment.Hotspots in this area are focused on reducing their immunogenicity and improving their therapeutic effect.In this work,we present a novel aquaculture de...Natural biomaterials have been widely applied in wound treatment.Hotspots in this area are focused on reducing their immunogenicity and improving their therapeutic effect.In this work,we present a novel aquaculture de-rived hybrid skin patch based on acellular fish skin(AFS)and chitosan(CS)for wound healing.Such functional patch was simply constructed by infiltrating the vascular endothelial growth factor(VEGF)-loaded CS pregel into the porous scaffold of the AFS.As the natural molecules and structure of fish skin are well-retained dur-ing the synthesis processes,the final patch presented brilliant tensile property,water-absorption property,good biocompatibility and low immunogenicity.In addition,the integrated CS and VEGF endow the patch with an-tibacterial and angiogenesis capability respectively for promoting tissue growth and wound healing.Thus,in a full-thickness wound rat model,the hybrid patch has been demonstrated with dramatic therapeutic efficacy in inhibiting inflammatory,accelerating angiogenesis,collagen deposition,and tissue generation during the wound repair procedure.These features imply the practical value of this multifunctional aquaculture derived hybrid skin patch in clinical wound management.展开更多
As a new kind of microcarrier device,microneedles are featured by micrometer needle arrays with an overall size in the centimeter scale.Due to the needle shape and the micron size,microneedles can penetrate the skin w...As a new kind of microcarrier device,microneedles are featured by micrometer needle arrays with an overall size in the centimeter scale.Due to the needle shape and the micron size,microneedles can penetrate the skin without harming nerves and blood vessels,which causes many advantages such as minimally invasive,safe and convenient.The past few decades have witnessed a great leap in microneedles research.The main materials of microneedles have changed from metal and ceramic to polymers with more complex functions,and the optimiza-tion of materials and preparation strategies has led to a greater variety of microneedle styles.Among them,the construction or combination of smaller size structures or materials on microneedles to fabricate hierarchical mi-croneedles is a major research hotspot.Here,we present the recent research progress of hierarchical microneedles for biomedicine.We begin by discussing the fabrication strategies of hierarchical microneedles,including main-stream casting and coating methods based on microneedle molds and three dimensions(3D)printing methods.We then expand the discussion from the hierarchical microneedles with porous structure to those composited with nanomaterials.Eventually,we have a discussion about the research progress of hierarchical microneedles in the area of biomarkers detection and transdermal drug delivery,as well as its future development direction.展开更多
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy...Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.展开更多
Angiogenesis and neurogenesis play irreplaceable roles in bone repair.Although biomaterial implantation that mimics native skeletal tissue is extensively studied,the nerve-vascular network reconstruction is neglected ...Angiogenesis and neurogenesis play irreplaceable roles in bone repair.Although biomaterial implantation that mimics native skeletal tissue is extensively studied,the nerve-vascular network reconstruction is neglected in the design of biomaterials.Our goal here is to establish a periosteum-simulating bilayer hydrogel and explore the efficiency of bone repair via enhancement of angiogenesis and neurogenesis.In this contribution,we designed a bilayer hydrogel platform incorporated with magnesium-ion-modified black phosphorus(BP)nanosheets for promoting neuro-vascularized bone regeneration.Specifically,we incorporated magnesium-ion-modified black phosphorus(BP@Mg)nanosheets into gelatin methacryloyl(GelMA)hydrogel to prepare the upper hydrogel,whereas the bottom hydrogel was designed as a double-network hydrogel system,consisting of two interpenetrating polymer networks composed of GelMA,PEGDA,andβ-TCP nanocrystals.The magnesium ion modification process was developed to enhance BP nanosheet stability and provide a sustained release platform for bioactive ions.Our results demonstrated that the upper layer of hydrogel provided a bionic periosteal structure,which significantly facilitated angiogenesis via induction of endothelial cell migration and presented multiple advantages for the upregulation of nerve-related protein expression in neural stem cells(NSCs).Moreover,the bottom layer of the hydrogel significantly promoted bone marrow mesenchymal stem cells(BMSCs)activity and osteogenic differentiation.We next employed the bilayer hydrogel structure to correct rat skull defects.Based on our radiological and histological examinations,the bilayer hydrogel scaffolds markedly enhanced early vascularization and neurogenesis,which prompted eventual bone regeneration and remodeling.Our current strategy paves way for designing nerve-vascular network biomaterials for bone regeneration.展开更多
Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or...Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.展开更多
When organs,especially external organs are injured,pathogens and excessive water loss can threaten the wound healing process and cause local irreversible tissue damage.Here,novel natural κ-Carrageenan microparticles(...When organs,especially external organs are injured,pathogens and excessive water loss can threaten the wound healing process and cause local irreversible tissue damage.Here,novel natural κ-Carrageenan microparticles(MPs)able to deliver bioactive proteins and small molecules to the wound surface for promoted regeneration were developed using microfluidic electrospray.The side chains of κ-Carrageenan were modified with methacrylate pendant groups to make the monomer photonic cross-linkable.By changing the concentration of methacrylated-κ-Carrageenan,different porosities of MPs with controllable drug loading were achieved.The size of the MPs can also be tailored by adjusting the voltage of the applied electric field.Vascular endothelial growth factor(VEGF)and antimicrobial peptides Eumenitin were co-loaded into the microparticles(VEGF-Eumenitin-MPs)and released sustainedly in phosphate-buffered saline.The VEGF-Eumenitin-MPs had high biocompatibility and intensive antibacterial activities for bacteria.Furthermore,the antibacterial and angiogenetic properties of the VEGF-Eumenitin-MPs were demonstrated in a infectious wound model and the chronic wound healing process was significantly enhanced in vivo.Therefore,the developed porous MPs with sustained drug release properties have the potential to serve as a platform to deliver bioactive proteins and small molecules to the wound surface for promoted regeneration.展开更多
基金National Key Research and Development Program of China,Grant/Award Number:2020YFA0908200National Natural Science Foundation of China,Grant/Award Numbers:T2225003,52073060,61927805+1 种基金Shenzhen Fundamental Research Program,Grant/Award Numbers:JCYJ20190813152616459,JCYJ20210324133214038Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2021B1515120054。
文摘Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibers have demonstrated their prominent values in biomedical applications.This review comprehensively summarizes the relevant research progress of sustainable microfibers from natural products and their biomedical applications.To begin,common natural elements are introduced for the microfiber fabrication.After that,the focus is on the specific fabri-cation technology and process.Subsequently,biomedical applications of sustainable microfibers are discussed in detail.Last but not least,the main challenges during the development process are summarized,followed by a vision for future development opportunities.
基金supported by the National Natural Science Foundation of China (21905205 and 22109037)the Natural Science Foundation of Tianjin City (20JCYBJC00380)+1 种基金the Advanced Talents Incubation Program of Hebei University (521000981408)the Haihe Laboratory of Sustainable Chemical Transformations(YYJC202110)。
文摘Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reaction of their active sites with large-sized anions.Herein,we demonstrate the application of a small molecule with rigid spirofluorene structu re,namely 2,2’,7,7’-tetrakis(diphenylamine)-9,9’-spirobifluorene(Spiro-TAD),as a cathode material for lithium dual-ion batteries.The inherent sterical structure endows the Spiro-TAD with good chemical stability and large internal space for fast diffusion kinetics of anions in the organic electrolyte.As a result,the Spiro-TAD electrode shows significant insolubility and less steric hindrance,and gives a high actual capacity of 109 mA h g^(-1)(active groups utilization ratio approximately 100%) at 50 mA g^(-1)with a high discharge voltage of 3.6 V(vs.Li+/Li),excellent rate capability(60 mA h g^(-1)at 2000 mA g^(-1)) and extremely stable cycling life(98.4% capacity retention after 1400 cycles at 500 mA g^(-1)) in half cells.Such good electrochemical performance is attributed to the robust and rapid adsorption/desorption of ClO4-anions,which can be proved by the in-situ FTIR and XPS.Moreover,an all-organic lithium dual-ion battery(a-OLDIBs) is constructed using the Spiro-TAD as cathode and 3,4,9,10-Perylenetetracarboxylic diimide(PTCDI) as anode and displays long-term cycling performance of 87.5 mA h g^(-1)after 800 cycles.This study will stimulate further developments in designing all organic battery systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174116 and 91850107)the National Key Research and Development Program of China(Grant No.2018YFA0306200)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)Science and Technology Project of Guangdong(Grant No.2020B010190001)。
文摘The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.
文摘Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.
基金Supported by Fundamental Research Funds for Central Nonprofit Scientific Research Institutions(1630012015011)
文摘The transformation of scientific and technological achievements concerning tropical agriculture has the characteristics of high risk and high return. Based on the characteristics of transformation of scientific and technological achievements concerning tropical agriculture,this paper analyzes the risk factors during the transformation of scientific and technological achievements concerning tropical agriculture. In accordance with the current situation of low transformation rate of scientific and technological achievements concerning tropical agriculture in China,this paper proposes the measures to avoid the risks in the transformation of scientific and technological achievements concerning tropical agriculture and enhance the transformation rate of scientific and technological achievements concerning tropical agriculture.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
基金This work was supported by the National Key Research and Development Program of China(No.2020YFA0908200)the National Natural Science Foundation of China(Nos.T2225003,52073060,and 61927805)+2 种基金the Nanjing Medical Science and Technique Development Foundation(No.ZKX21019)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120054)the Shenzhen Fundamental Research Program(Nos.JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘As a promising new micro-physiological system,organ-on-a-chip has been widely utilized for in vitro pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delicate replication of in vivo-like microenvironment.To better observe the biological processes,a variety of sensors have been integrated to realize in-situ,realtime,and sensitive monitoring of critical signals for organs development and disease modeling.Herein,we discuss the recent research advances made with respect to sensors-integrated organ-on-a-chip in this overall review.Firstly,we briefly explore the underlying fabrication procedures of sensors within microfluidic platforms and several classifications of sensory principles.Then,emphasis is put on the highlighted applications of different types of organ-on-a-chip incorporated with various sensors.Last but not least,perspective on the remaining challenges and future development of sensors-integrated organ-on-a-chip are presented.
基金supported by the Tianjin Natural Science Foundation of China(20JCZDJC00280 and 19JCQNJC05900)the National Key R&D Program of China(2017YFA0700104)the National Natural Science Foundation of China(21905205)。
文摘水系锌碘电池(AZIBs)是一种非常受欢迎的绿色储能技术,但它的能量密度极大地限制了其应用.在此,我们报道了一种高能量密度的可充电AZIBs,通过将高质量碘锚定到具有大微孔体积和富吡啶氮掺杂的独特分级多孔碳中来实现.多孔碳结合了微孔对碘的强约束和氮掺杂对碘的强化学吸附的优点,可使碘的负载量高达61.6 wt%.密度泛函理论计算和实验研究表明,氮掺杂所赋予的丰富活性位点能促进AZIBs的氧化还原动力学,吡啶氮掺杂对AZIBs的吸附可逆转化比普通氮掺杂更有效.高负载碘电极在1.0 C时表现出219.3 mA h g^(-1)的高容量,优异的速率性能,以及优越的循环稳定性,在5.0 C时,循环10,000次内的容量衰减极低,每圈仅为0.00147%.由三节电池串联的初步装置,能量密度高,按电池总质量计算可达72.6 W h kg^(-1),几乎是商用铅酸和镍-镉电池能量密度的两倍.该水系电池的高能量密度和长循环寿命使其在大规模储能应用领域具有巨大潜力.
基金supported by the National Key Research and Develop-ment Program of China (2020YFA0908200)the National Natural Sci-ence Foundation of China (52073060 and 61927805)+1 种基金Guangdong Basic and Applied Basic Research Foundation (2021B1515120054)the Shenzhen Fundamental Research Program (JCYJ20190813152616459 and JCYJ20210324133214038).
文摘Natural biomaterials have been widely applied in wound treatment.Hotspots in this area are focused on reducing their immunogenicity and improving their therapeutic effect.In this work,we present a novel aquaculture de-rived hybrid skin patch based on acellular fish skin(AFS)and chitosan(CS)for wound healing.Such functional patch was simply constructed by infiltrating the vascular endothelial growth factor(VEGF)-loaded CS pregel into the porous scaffold of the AFS.As the natural molecules and structure of fish skin are well-retained dur-ing the synthesis processes,the final patch presented brilliant tensile property,water-absorption property,good biocompatibility and low immunogenicity.In addition,the integrated CS and VEGF endow the patch with an-tibacterial and angiogenesis capability respectively for promoting tissue growth and wound healing.Thus,in a full-thickness wound rat model,the hybrid patch has been demonstrated with dramatic therapeutic efficacy in inhibiting inflammatory,accelerating angiogenesis,collagen deposition,and tissue generation during the wound repair procedure.These features imply the practical value of this multifunctional aquaculture derived hybrid skin patch in clinical wound management.
基金supported by the National Key Research and De-velopment Program of China (2022YFB4700100)the National Natu-ral Science Foundation of China (T2225003,52073060 and 61927805)+2 种基金the Nanjing Medical Science and Technique Development Foundation (ZKX21019)Guangdong Basic and Applied Basic Research Foundation (2021B1515120054)the Shenzhen Fundamental Research Pro-gram (JCYJ20190813152616459 and JCYJ20210324133214038).
文摘As a new kind of microcarrier device,microneedles are featured by micrometer needle arrays with an overall size in the centimeter scale.Due to the needle shape and the micron size,microneedles can penetrate the skin without harming nerves and blood vessels,which causes many advantages such as minimally invasive,safe and convenient.The past few decades have witnessed a great leap in microneedles research.The main materials of microneedles have changed from metal and ceramic to polymers with more complex functions,and the optimiza-tion of materials and preparation strategies has led to a greater variety of microneedle styles.Among them,the construction or combination of smaller size structures or materials on microneedles to fabricate hierarchical mi-croneedles is a major research hotspot.Here,we present the recent research progress of hierarchical microneedles for biomedicine.We begin by discussing the fabrication strategies of hierarchical microneedles,including main-stream casting and coating methods based on microneedle molds and three dimensions(3D)printing methods.We then expand the discussion from the hierarchical microneedles with porous structure to those composited with nanomaterials.Eventually,we have a discussion about the research progress of hierarchical microneedles in the area of biomarkers detection and transdermal drug delivery,as well as its future development direction.
基金supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(T2225003,52073060,and 61927805)+3 种基金the Nanjing Medical Science and Technique Development Foundation(ZKX21019)the Clinical Trials from Nanjing Drum Tower Hospital(2022-LCYJ-ZD-01)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038).
文摘Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.
基金supported by the National Key Research and Development Program of China(2017YFC1103800).
文摘Angiogenesis and neurogenesis play irreplaceable roles in bone repair.Although biomaterial implantation that mimics native skeletal tissue is extensively studied,the nerve-vascular network reconstruction is neglected in the design of biomaterials.Our goal here is to establish a periosteum-simulating bilayer hydrogel and explore the efficiency of bone repair via enhancement of angiogenesis and neurogenesis.In this contribution,we designed a bilayer hydrogel platform incorporated with magnesium-ion-modified black phosphorus(BP)nanosheets for promoting neuro-vascularized bone regeneration.Specifically,we incorporated magnesium-ion-modified black phosphorus(BP@Mg)nanosheets into gelatin methacryloyl(GelMA)hydrogel to prepare the upper hydrogel,whereas the bottom hydrogel was designed as a double-network hydrogel system,consisting of two interpenetrating polymer networks composed of GelMA,PEGDA,andβ-TCP nanocrystals.The magnesium ion modification process was developed to enhance BP nanosheet stability and provide a sustained release platform for bioactive ions.Our results demonstrated that the upper layer of hydrogel provided a bionic periosteal structure,which significantly facilitated angiogenesis via induction of endothelial cell migration and presented multiple advantages for the upregulation of nerve-related protein expression in neural stem cells(NSCs).Moreover,the bottom layer of the hydrogel significantly promoted bone marrow mesenchymal stem cells(BMSCs)activity and osteogenic differentiation.We next employed the bilayer hydrogel structure to correct rat skull defects.Based on our radiological and histological examinations,the bilayer hydrogel scaffolds markedly enhanced early vascularization and neurogenesis,which prompted eventual bone regeneration and remodeling.Our current strategy paves way for designing nerve-vascular network biomaterials for bone regeneration.
文摘Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.
基金supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52073060 and 61927805)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515011750)the Shenzhen Fundamental Research Program(JCYJ20190813152616459,JCYJ20210324133214038 and JCYJ20190808120405672).
文摘When organs,especially external organs are injured,pathogens and excessive water loss can threaten the wound healing process and cause local irreversible tissue damage.Here,novel natural κ-Carrageenan microparticles(MPs)able to deliver bioactive proteins and small molecules to the wound surface for promoted regeneration were developed using microfluidic electrospray.The side chains of κ-Carrageenan were modified with methacrylate pendant groups to make the monomer photonic cross-linkable.By changing the concentration of methacrylated-κ-Carrageenan,different porosities of MPs with controllable drug loading were achieved.The size of the MPs can also be tailored by adjusting the voltage of the applied electric field.Vascular endothelial growth factor(VEGF)and antimicrobial peptides Eumenitin were co-loaded into the microparticles(VEGF-Eumenitin-MPs)and released sustainedly in phosphate-buffered saline.The VEGF-Eumenitin-MPs had high biocompatibility and intensive antibacterial activities for bacteria.Furthermore,the antibacterial and angiogenetic properties of the VEGF-Eumenitin-MPs were demonstrated in a infectious wound model and the chronic wound healing process was significantly enhanced in vivo.Therefore,the developed porous MPs with sustained drug release properties have the potential to serve as a platform to deliver bioactive proteins and small molecules to the wound surface for promoted regeneration.