Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are gener...Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations.展开更多
Precipitation-hardenable commercial Mg alloy QE22(Mg-2.5Ag-2.ONd-0.7Zr,wt.%)has excellent mechan-ical properties,but precipitates in this alloy have not been well understood.In this work,precipitate phasesγ",γ,...Precipitation-hardenable commercial Mg alloy QE22(Mg-2.5Ag-2.ONd-0.7Zr,wt.%)has excellent mechan-ical properties,but precipitates in this alloy have not been well understood.In this work,precipitate phasesγ",γ,andδformed during the isothermal ageing process at 150,200,250,and 300℃have been characterized using atomic-resolution high-angle annular dark-field scanning transmission electron mi-croscopy and atomic-scale energy-dispersive X-ray spectroscopy.The morphology,crystal structure,and orientation relationship of these precipitate phases have been determined.Domain boundaries usually exist in a singleγparticle,which can be characterized by a separation vector of[1(1)01]_(α).Theδphase forms in situ from its precursorγphase,consequently leading to the formation of three different variants within a single 8 particle.The nucleation of theδphase is strongly related to the domain boundaries of the y phase.The formation of theγphase may be promoted by its precursorγ"phase.The similarities in atomic structures of theγ",γ,andδphases are described and discussed,indicating that transfor-mations between these precipitate phases can be accomplished through the diffusion of added alloying elements.展开更多
基金support by the National Natural Science Foundation of China(52071033)Open Foundation of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(32115016).
文摘Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations.
基金HWC acknowledges the support from the National Key Research and Development Program of China(No.2021YFB03702101)National Natural Science Foundation of China(Nos.52071033,52101150)+3 种基金Sichuan Science and Technology Program(No.2022YFG0287)Fundamental Research Funds for the Central Universities(No.2682021CX114)Project on Function Development of Large-scale Instruments of Chongqing University(No.gnkf2022017)JFN acknowledges the financial support from the Australian Research Council.
文摘Precipitation-hardenable commercial Mg alloy QE22(Mg-2.5Ag-2.ONd-0.7Zr,wt.%)has excellent mechan-ical properties,but precipitates in this alloy have not been well understood.In this work,precipitate phasesγ",γ,andδformed during the isothermal ageing process at 150,200,250,and 300℃have been characterized using atomic-resolution high-angle annular dark-field scanning transmission electron mi-croscopy and atomic-scale energy-dispersive X-ray spectroscopy.The morphology,crystal structure,and orientation relationship of these precipitate phases have been determined.Domain boundaries usually exist in a singleγparticle,which can be characterized by a separation vector of[1(1)01]_(α).Theδphase forms in situ from its precursorγphase,consequently leading to the formation of three different variants within a single 8 particle.The nucleation of theδphase is strongly related to the domain boundaries of the y phase.The formation of theγphase may be promoted by its precursorγ"phase.The similarities in atomic structures of theγ",γ,andδphases are described and discussed,indicating that transfor-mations between these precipitate phases can be accomplished through the diffusion of added alloying elements.