期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
1
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song Hangbin Zheng Cheng Tian Ke Gao Nan Sun zhixing jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 Calcium looping(CaL) Solar thermochemical Energy storage Binary sulfate Fast reaction kinetics
下载PDF
Air to fuel:Direct capture of CO_(2)from air and in-situ solar-driven conversion into syngas via Ni_(x)/NaA nanomaterials
2
作者 Cheng Tian Xianglei Liu +7 位作者 Chenxi Liu Shaoyang Li Qiyan Li Nan Sun Ke Gao zhixing jiang Kun Chang Yimin Xuan 《Nano Research》 SCIE EI CSCD 2023年第8期10899-10912,共14页
Ever-increasing CO_(2)emissions and atmospheric concentration mainly due to the burning of traditional fossil fuels have caused severe global warming and climate change problems.Inspired by nature’s carbon cycle,we p... Ever-increasing CO_(2)emissions and atmospheric concentration mainly due to the burning of traditional fossil fuels have caused severe global warming and climate change problems.Inspired by nature’s carbon cycle,we propose a novel dual functional catalyst-sorbent to tackle energy and environmental problems simultaneously via direct capture of CO_(2)from air and in-situ solar-driven conversion into clean fuels.Economically and operationally advantageous,the planned coupling reaction can be carried out in a single reactor without the requirement for an extra trapping device.The great CO_(2)capture and conversion performance in an integrated step is shown by the CO_(2)capacity of up to 0.38 mmol·g^(−1)for adsorption from 500 ppm CO_(2)at 25℃and the CO_(2)conversion rate of up to 95%.Importantly,the catalyst-sorbent is constituted of a nonprecious metal Ni catalyst and an inexpensive commercially available CO_(2)sorbent,viz,zeolite NaA.Furthermore,this designed dual functional material also exhibits outstanding stability performance.This work offers a novel pathway of capturing CO_(2)in the air at room temperature and converting it by CH4 into fuel,contributing to the new era of carbon neutrality. 展开更多
关键词 direct CO_(2)capture solar fuel photothermocatalytic dry reforming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部