Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama...Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.展开更多
ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adoptin...ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x).展开更多
Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead ...Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch,restricting their EWA application.Therefore,the optimization of impedance matching becomes crucial.In this work,we developed polymethyl methacrylate(PMMA)@Ti_(3)C_(2)T_(x)@SiO_(2) composites with a sandwich-like core–shell structure by coating SiO_(2) on PMMA@Ti_(3)C_(2)T_(x).The results demonstrate that the superiority of the SiO_(2) layer in combination with PMMA@Ti_(3)C_(2)T_(x),outperforming other relative graded distribution structures and meeting the requirements of EWA equipment.The resulting PMMA@Ti_(3)C_(2)T_(x)@SiO_(2) composites achieved a minimum reflection loss of-58.08 dB with a thickness of 1.9 mm,and an effective absorption bandwidth of 2.88 GHz.Mechanism analysis revealed that the structural design of SiO_(2) layer not only optimized impedance matching,but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization.Therefore,this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti_(3)C_(2)T_(x)-based composites.展开更多
Perovskite materials(ABO_(3))possess a wealth of elements selectable and exhibit a diverse range of octahedral transformations.The emergence of high-entropy perovskite ceramics provides a fresh perspective for advanci...Perovskite materials(ABO_(3))possess a wealth of elements selectable and exhibit a diverse range of octahedral transformations.The emergence of high-entropy perovskite ceramics provides a fresh perspective for advancing the field of wave-absorbing materials.In this study,we concentrate on the wet chemical synthesis of a high-entropy perovskite oxide,Sr(Cr_(0.2)Mn_(0.2)Fe_(0.2)C_(0.2)Ni_(0.2))O_(3),and investigate its crystal structure,microstructure,chemical composition,magnetic properties,and microwave absorbing capabilities.The results indicate that when sintered at a temperature of 1,350℃,the sample achieves a minimum reflection loss of-54.0 dB at a frequency of 9.68 GHz,accompanied by a maximum effective absorption bandwidth(EAB)of 7.44 GHz at the thickness of 1.8 mm.The high-entropy design of the B-site induces distortions of oxygen vacancy and octahedral structure of the perovskite material.This leads to the fine tuning of its dielectric and magnetic properties,thereby endowing perovskite with excellent electromagnetic wave absorption capabilities.Consequently,perovskite emerges as a promising new electromagnetic wave absorption material with significant potential.展开更多
In this study,the rheological properties,crystallization and foaming behavior of poly(lactic acid)with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer.Polyamide 6 particles were defo...In this study,the rheological properties,crystallization and foaming behavior of poly(lactic acid)with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer.Polyamide 6 particles were deformed into nanofibrils during drawing.For the 10%polyamide 6 case,polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm,owing to the smaller polyamide 6 particle size and enhanced interface adhesion.Rheological experiments revealed that the viscosity and storage modulus of the composites were increased,which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils.The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites.The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid)crystallization.With the polyethylene glycol,the crystallization half-time reduced from 103.6 to 62.2 s.Batch foaming results indicated that owing to higher cell nucleation efficiency,the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio.Furthermore,the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.展开更多
基金the Science and Technology Department of Henan Province of China(Grant No.222102240060 and 222300420541)the Education Department of Henan Province of China(Grant No.22B430023)supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.23IRTSTHN009)。
文摘Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.
基金Project supported by the Key Scientific and Technological Research Projects of Henan Province,China(Grant Nos.222102220021 and 222102220056)。
文摘ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x).
基金supported by the National Natural Science Foundation of China(No.U2004177)Henan Province Key Research Project for Higher Education Institutions(No.23B430017)+1 种基金the Outstanding Youth Fund of Henan Province(No.212300410081)the Science and Technology Innovation Talents in Universities of Henan Province(No.22HASTIT001).
文摘Ti_(3)C_(2)T_(x) nanosheets have attracted significant attention for their potential in electromagnetic wave absorption(EWA).However,their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch,restricting their EWA application.Therefore,the optimization of impedance matching becomes crucial.In this work,we developed polymethyl methacrylate(PMMA)@Ti_(3)C_(2)T_(x)@SiO_(2) composites with a sandwich-like core–shell structure by coating SiO_(2) on PMMA@Ti_(3)C_(2)T_(x).The results demonstrate that the superiority of the SiO_(2) layer in combination with PMMA@Ti_(3)C_(2)T_(x),outperforming other relative graded distribution structures and meeting the requirements of EWA equipment.The resulting PMMA@Ti_(3)C_(2)T_(x)@SiO_(2) composites achieved a minimum reflection loss of-58.08 dB with a thickness of 1.9 mm,and an effective absorption bandwidth of 2.88 GHz.Mechanism analysis revealed that the structural design of SiO_(2) layer not only optimized impedance matching,but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization.Therefore,this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti_(3)C_(2)T_(x)-based composites.
基金This work was supported by the Science and Technology Inno-vation Talents in Universities of Henan Province(CN)(22HAS-TIT001)the National Natural Science Foundation of China(U2004177)Joint Fund of Research and Development Program of Henan Province(222301420002)。
文摘Perovskite materials(ABO_(3))possess a wealth of elements selectable and exhibit a diverse range of octahedral transformations.The emergence of high-entropy perovskite ceramics provides a fresh perspective for advancing the field of wave-absorbing materials.In this study,we concentrate on the wet chemical synthesis of a high-entropy perovskite oxide,Sr(Cr_(0.2)Mn_(0.2)Fe_(0.2)C_(0.2)Ni_(0.2))O_(3),and investigate its crystal structure,microstructure,chemical composition,magnetic properties,and microwave absorbing capabilities.The results indicate that when sintered at a temperature of 1,350℃,the sample achieves a minimum reflection loss of-54.0 dB at a frequency of 9.68 GHz,accompanied by a maximum effective absorption bandwidth(EAB)of 7.44 GHz at the thickness of 1.8 mm.The high-entropy design of the B-site induces distortions of oxygen vacancy and octahedral structure of the perovskite material.This leads to the fine tuning of its dielectric and magnetic properties,thereby endowing perovskite with excellent electromagnetic wave absorption capabilities.Consequently,perovskite emerges as a promising new electromagnetic wave absorption material with significant potential.
基金grateful for support from the Key Scientific and Technological Projects of Henan Province(Grant Nos.232102230153,232102230158,and for international cooperation 232102521021)the National Natural Science Joint Fund of China(Grant No.U1909219)+1 种基金the Key R&D Project of Henan Province(Grant No.221111520200)the Scientific and Technological Research Project of Henan Province(Grand No.202102210028).
文摘In this study,the rheological properties,crystallization and foaming behavior of poly(lactic acid)with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer.Polyamide 6 particles were deformed into nanofibrils during drawing.For the 10%polyamide 6 case,polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm,owing to the smaller polyamide 6 particle size and enhanced interface adhesion.Rheological experiments revealed that the viscosity and storage modulus of the composites were increased,which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils.The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites.The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid)crystallization.With the polyethylene glycol,the crystallization half-time reduced from 103.6 to 62.2 s.Batch foaming results indicated that owing to higher cell nucleation efficiency,the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio.Furthermore,the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.