The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving...The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving system harmonic current on the main motion of temper mill set. Aiming at the electrical driving system of CM04 temper mill, the effect of harmonic current is analyzed and evaluated according to different load. Combining the features of CM04 temper mill′s structure and its working state, the paper discusses in every detail how the harmonic current in main circuit, which can be regarded as a disturbance via feedback control circuit , influences main motion of temper mill set.展开更多
Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this...Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.展开更多
A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very d...A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very difficult to be described and predicted with linear vibration theory.On the basis of nonlinear vibration and catastrophe theory,fhe eatastrophe of the vibration amplitude of the faulty rotor is described;a way to predict its emergence is developed.展开更多
The disc cutters of tunnel boring machine(TBM) are installed with different polar angles. This causes the cutting depth difference between adjacent disc cutters on the tunnel face. A rock-cutting model was established...The disc cutters of tunnel boring machine(TBM) are installed with different polar angles. This causes the cutting depth difference between adjacent disc cutters on the tunnel face. A rock-cutting model was established to study the rock fragmentation law between adjacent disc cutters with different polar angles based on particle flow code(PFC). The influence of polar angle of adjacent disc cutters on rock cracks and stresses under different cutter spacing and penetration was studied. Research shows that polar angle difference leads to the discontinuity of rock-fragmentation process by adjacent cutters. The effect of rock-fragmentation is influenced by the cutting depth difference between adjacent cutters. The effect of rock-fragmentation performed best, meanwhile large rock blocks were flaked when the difference of cutting depth is half of the penetration. Too large or small difference of the cutting depth will cause high specific energy consumption of rock fragmentation. The specific energy consumption is relatively small when the difference of cutting depth is half of the penetration.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
By means of the theory of composite-modality,the superposition principle of the vibra-tion mode of the linear system,and the analytical method of the original coordinate,a mathematical model of transient response to a...By means of the theory of composite-modality,the superposition principle of the vibra-tion mode of the linear system,and the analytical method of the original coordinate,a mathematical model of transient response to any stimulus for generally viscous damping multi-degree system was established.This method not only solves the problem of the transient response of displacement,but also calculates the transient response of the elastic force or the elastic couple of the system.展开更多
The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put fo...The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put forward,such as the controlling of inclination angular-velocity,the pre-estimating of compensation,the synchronous cylinder's pressure signal protection,ratio pressure control and changing flow control etc,to increase the system's control accuracy and reliability greatly.展开更多
文摘The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving system harmonic current on the main motion of temper mill set. Aiming at the electrical driving system of CM04 temper mill, the effect of harmonic current is analyzed and evaluated according to different load. Combining the features of CM04 temper mill′s structure and its working state, the paper discusses in every detail how the harmonic current in main circuit, which can be regarded as a disturbance via feedback control circuit , influences main motion of temper mill set.
文摘Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.
文摘A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very difficult to be described and predicted with linear vibration theory.On the basis of nonlinear vibration and catastrophe theory,fhe eatastrophe of the vibration amplitude of the faulty rotor is described;a way to predict its emergence is developed.
基金Project(2012AA041801)supported by the Hi-tech Research and Development Program of ChinaProject(2013CB035401)supported by the National Basic Research Program of ChinaProject(51475478)supported by the National Natural Science Foundation of China
文摘The disc cutters of tunnel boring machine(TBM) are installed with different polar angles. This causes the cutting depth difference between adjacent disc cutters on the tunnel face. A rock-cutting model was established to study the rock fragmentation law between adjacent disc cutters with different polar angles based on particle flow code(PFC). The influence of polar angle of adjacent disc cutters on rock cracks and stresses under different cutter spacing and penetration was studied. Research shows that polar angle difference leads to the discontinuity of rock-fragmentation process by adjacent cutters. The effect of rock-fragmentation is influenced by the cutting depth difference between adjacent cutters. The effect of rock-fragmentation performed best, meanwhile large rock blocks were flaked when the difference of cutting depth is half of the penetration. Too large or small difference of the cutting depth will cause high specific energy consumption of rock fragmentation. The specific energy consumption is relatively small when the difference of cutting depth is half of the penetration.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.
文摘By means of the theory of composite-modality,the superposition principle of the vibra-tion mode of the linear system,and the analytical method of the original coordinate,a mathematical model of transient response to any stimulus for generally viscous damping multi-degree system was established.This method not only solves the problem of the transient response of displacement,but also calculates the transient response of the elastic force or the elastic couple of the system.
文摘The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put forward,such as the controlling of inclination angular-velocity,the pre-estimating of compensation,the synchronous cylinder's pressure signal protection,ratio pressure control and changing flow control etc,to increase the system's control accuracy and reliability greatly.