Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei...Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide...Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.展开更多
Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based...Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling.Herein,we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O(NMOH)for high-performance aqueous ZIBs.A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time.Na+and crystal water enlarge the interlayer distance to enhance the insertion of Zn^2+,and some sodium ions are replaced with Zn^2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn^2+/H^+ insertion/extraction,resulting in exceptional specific capacities and satisfactory structural stabilities.Additionally,a pseudo-capacitance derived from the surface-adsorbed Na^+ also contributes to the electrochemical performances.The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g^−1 at current densities of 200 and 1500 mA g^−1,respectively,but also maintains a good long-cycling performance of 201.6 mA h g^−1 at a high current density of 500 mA g^−1 after 400 cycles,which makes the NMOH cathode competitive for practical applications.展开更多
基金Financial support from the National Natural Science Foundation of China(51972016)the Fundamental Research Funds for the Central Universities(JD2417)is gratefully acknowledged.
文摘Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
文摘Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
基金Financial support from the National Natural Science Foundation of China (51972016, 51533001)the National Key Research and Development Program of China (2016YFC0801302)State Key Laboratory of Organic-Inorganic Composites (oic-201801002)
文摘Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling.Herein,we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O(NMOH)for high-performance aqueous ZIBs.A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time.Na+and crystal water enlarge the interlayer distance to enhance the insertion of Zn^2+,and some sodium ions are replaced with Zn^2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn^2+/H^+ insertion/extraction,resulting in exceptional specific capacities and satisfactory structural stabilities.Additionally,a pseudo-capacitance derived from the surface-adsorbed Na^+ also contributes to the electrochemical performances.The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g^−1 at current densities of 200 and 1500 mA g^−1,respectively,but also maintains a good long-cycling performance of 201.6 mA h g^−1 at a high current density of 500 mA g^−1 after 400 cycles,which makes the NMOH cathode competitive for practical applications.