期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Single-channel vector magnetic information detection method based on diamond NV color center 被引量:2
1
作者 Qin-Qin Wang Rui-Rong Wang +8 位作者 Jin-Ping liu Shao-Zhuo lin liang-Wei Wu Hao Guo zhong-hao li Huan-Fei Wen Jun Tang Zong-Min Ma Jun liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期275-281,共7页
A method of detecting the single channel triaxial magnetic field information based on diamond nitrogen-vacancy(NV)color center is introduced.Firstly,the incident angle of the bias magnetic field which can achieve the ... A method of detecting the single channel triaxial magnetic field information based on diamond nitrogen-vacancy(NV)color center is introduced.Firstly,the incident angle of the bias magnetic field which can achieve the equal frequency difference optically-detected magnetic resonance(ODMR)spectrum of diamond NV color center is calculated theoretically,and the triaxial magnetic information solution model is also constructed.Secondly,the microwave time-controlled circuit module is designed to generate equal timing and equal frequency difference microwave pulse signals in one channel.Combining with the optical detection magnetic resonance technology,the purpose of sequentially locking and detecting the four formant signals on one side of the diamond NV color center(m_(s)=-1 state signal)is achieved,and the vector magnetic field information detection is accomplished by combining the triaxial magnetic information solution model.The system can obtain magnetic field detection in a range of 0 mT-0.82 mT.The system's magnetic noise sensitivity is 14.2 nT/Hz^(1/2),and the deviation angle errors of magnetic field detectionθ_(x) andθ_(y) are 1.3° and 8.2° respectively. 展开更多
关键词 nitrogen-vacancy(NV)color center VECTOR electron spin magnetic detection
下载PDF
Rotational Population Measurement of Ultracold 85Rb^133Cs Molecules in the Lowest Vibrational Ground State 被引量:2
2
作者 Zhong-Hua Ji zhong-hao li +3 位作者 Ting Gong Yan-Ting Zhao lian-Tuan Xiao Suo-Tang Jia 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期27-30,共4页
We measure the rotational populations of ultracold SS Rbla3 Cs molecules in the lowest vibrational ground state by a depletion spectroscopy and quantify the molecular production rate based on the measurement of single... We measure the rotational populations of ultracold SS Rbla3 Cs molecules in the lowest vibrational ground state by a depletion spectroscopy and quantify the molecular production rate based on the measurement of single ion signal area. The SSRb133Cs molecules in the X1∑+(v = 0) are formed from the short-range (2)^3П0+(V = 10, J = 0) molecular state. A home-made external-cavity diode laser is used as the depletion laser to measure the rotational populations of the formed molecules. Based on the determination of single ion signal, the production rates of molecules in the J=0 and J = 2 rotational levels are derived to be 4800mole/s and 7200mole/s, respectively. The resolution and quantification of molecules in rotational states are facilitative for the manipulation of rotational quantum state of ultracold molecules. 展开更多
关键词 Cs Molecules in the Lowest Vibrational Ground State Rotational Population Measurement of Ultracold Rb
下载PDF
Current sensor based on diamond nitrogen-vacancy color center 被引量:1
3
作者 史子阳 高伟 +6 位作者 王启 郭浩 唐军 李中豪 温焕飞 马宗敏 刘俊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期118-123,共6页
High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacan... High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacancy(NV)color center magnetic measurement method is proposed to realize the accurate measurement of current.This new current method can greatly improve the accuracy of current measurement.Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm,which is superior to other current sensors and solves the problem of low linearity.When the range of input current is 5-40 A,the absolute error of the calculated current is less than 51μA,and the relative error is 2.42×10^(-6) at 40 A.Combined with the research content and results of the experiment,the application of the current sensor in the field of current precision measurement is prospected. 展开更多
关键词 current sensor DIAMOND high precision nitrogen-vacancy(NV)color center
下载PDF
Transition Dipole Moment Measurements of Ultracold Photoassociated ^(85)Rb^(133)Cs Molecules by Depletion Spectroscopy
4
作者 Juan-Juan Cao Ting Gong +4 位作者 zhong-hao li Zhong-Hua Ji Yan-Ting Zhao lian-Tuan Xiao Suo-Tang Jia 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期18-21,共4页
The transition dipole moments(TDMs) of ultracold85 Rb133 Cs molecules between the lowest vibrational ground level, (X^1Σ~+( v= 0, J= 1), and the two excited rovibrational levels, 2~3Π0+(v′= 10, J′= 2) and... The transition dipole moments(TDMs) of ultracold85 Rb133 Cs molecules between the lowest vibrational ground level, (X^1Σ~+( v= 0, J= 1), and the two excited rovibrational levels, 2~3Π0+(v′= 10, J′= 2) and 2~1Π1(v′= 22,J′= 2), are measured using depletion spectroscopy. The ground-state85 Rb133 Cs molecules are formed from cold mixed component atoms via the 2~3Π0-( v= 11, J= 0) short-range level, then detected by time-of-flight mass spectrum. A home-made external-cavity diode laser is used as the depletion laser to couple the ground level and the two excited levels. Based on the depletion spectroscopy, the corresponding TDMs are then derived to be 3.5(2)×10^(-3)eαα and 1.6(1)×10^(-2)eαα, respectively, where 0)(60 represents the atomic unit of electric dipole moment. The enhance of TDM with nearly a factor of 5 for the 21Π1(v′= 22, J′= 2) excited level means that it has stronger coupling with the ground level. It is meaningful to find more levels with much more strong coupling strength by the represented depletion spectroscopy to realize direct stimulated Raman adiabatic passage transfer from scattering atomic states to deeply molecular states. 展开更多
关键词 TDM Cs Molecules by Depletion Spectroscopy Transition Dipole Moment Measurements of Ultracold Photoassociated RB
下载PDF
STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats
5
作者 Qing-ping TANG Qin SHEN +7 位作者 li-xiang WU Xiang-ling FENG Hui liU Bei WU Xiao-song HUANG Gai-qing WANG zhong-hao li Zun-jing liU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2016年第7期493-502,共10页
Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- v... Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- volved in neural plasticity following willed-movement training. To investigate the potential signals related to neural plasticity following willed-movement training, littermate rats were randomly assigned into three groups: middle cerebral artery occlusion, environmental modification, and willed-movement training. The infarct volume was measured 18 d after occlusion of the right middle cerebral artery. Reverse transcription-polymerase chain reaction (PCR) and im- munofluorescence staining were used to detect the changes in the signal transducer and activator of transcription 3 (STAT3) mRNA and protein, respectively. A chromatin immunoprecipitation was used to investigate whether STAT3 bound to plasticity-related genes, such as brain-derived neurotrophic factor (BDNF), synaptophysin, and protein in- teracting with C kinase 1 (PICK1). In this study, we demonstrated that STAT3 mRNA and protein were markedly increased following 15-d willed-movement training in the ischemic hemispheres of the treated rats. STAT3 bound to BDNF, PICK1, and synaptophysin promoters in the neocortical cells of rats. These data suggest that the increased STAT3 levels after willed-movement training might play critical roles in the neural plasticity by directly regulating plasticity-related genes. 展开更多
关键词 Motor training Signal transducer and activator of transcription 3 (STAT3) Brain-derived neurotrophicfactor (BDNF) Protein interacting with C kinase 1 (PICK1) Neural plasticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部