Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin...Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.展开更多
We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) wa...We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) was prepared via the one-pot evaporation induced self-assembly method. By using the incipient impregnation method, different amounts of free Ni were loaded over Ni-OMA(Ni/NiOMA) at a fixed total NiO content of 15 wt%. Characterization results confirmed the formation of wellstructured Ni-OMA, and the ordered structure was still well preserved even after impregnating NiO at a content of as high as 12 wt%. The catalysts were evaluated for the CO methanation as a model reaction under varied conditions. Importantly, the activity and stability of Ni/Ni-OMA for the titled reaction were significantly regulated by simply changing the ratio of the confined to free Ni. Over the optimum catalyst of NiO(2 wt%)/NiO(13 wt%)-OMA, the high activity at a temperature of as low as 300 ℃ was achieved with the space-time yield of methane over 7.6 g gcat-1 h-1 while a long-term stability for a time-onstream of 400 h was confirmed without an observable deactivation under the conditions of 600 ℃ and an extremely high gas hourly space velocity of 120,000 mL g-1 h-1. The results were well explained as the integrated merits of the free Ni for a high dispersion and the confined Ni in OMA for the anti-sintering property.展开更多
Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design...Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design to develop such a material.The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene(SEBS-g-COOH)as the elastic substrate,and a synthesized azobenzene derivative as the functional filler(Azo12).By surface treatment using acidic and base solutions,the carboxyl groups on the surface can reversibly transform into carboxylate groups,which render the composite tunable hygroscopic actuating functionality.On another aspect,the added filler undergoes trans-to-cis isomerization when exposed to UV light irradiation,leading to liquefaction of the crystalline aggregates formed by Azo12 molecules.The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure.This reversible change in crystralline structure is utilized to realize the shape memory property,and 5 wt%of Azo12addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity.The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior.The proposed method can be extend to designing different composites with the demonstrated functionalities.展开更多
The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively ev...The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively evaluated for pressurized carbon dioxide reforming of methane(CRM)under severe conditions of 750℃,1.0 MPa,CH_(4)/CO_(2)=1,and gas hourly space velocity of 53200 mL/(g·h).The addition of rare earth metal oxide does not affect the Ni dispersion,and all of the catalysts show similarly high Ni dispersion of16.0%±0.2%.As a result,all of the catalysts are highly active for pressurized CRM,the initial CH_(4) conversions of which approach the thermodynamic equilibrium(47.0%±0.2%).In contrast,a clearly favorable effect of the added rare earth metal oxide on the stability of Ni-SiO_(2)was revealed from the CRM results for a time-on-stream of 50 h,and the highest stability without an observable decrease in the conversions of CH_(4)and CO_(2)was obtained over Ni-7Sm_(2)O_(3)-SiO_(2).Based on the characterization results of thermogravimetric differential scanning calorimetry(TG-DSC)and transmission electron microscopy(TEM),the improved stability of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2)for pressurized CRM was manifested mainly as the suppressed formation of carbon nanotubes over the catalyst surface,the extent of which is dependent on the specific rare earth metal oxide.Moreover,the consecutive temperature programmed surface reaction of CH_(4),CO_(2),and O_(2)over Ni-7Sm_(2)O_(3)-SiO_(2)vigorously reveals that the addition of Sm_(2)O_(3)into Ni-SiO_(2)inhibits the CH_(4)decomposition but enhances the oxidization of the carbon species by CO_(2),leading to the well-balanced rates for forming and removing the coke over Ni-7Sm_(2)O_(3)-SiO_(2).These findings are not only beneficial to deeply understanding the promotional effect of rare earth metal oxides on Ni-based catalysts for CRM,but also important for extending the application of the less studied rare earth metal oxides as promoters for the metalsupported catalysts.展开更多
The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fl...The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fluidized bed(CFB)methanation reactors.In this work,a particle-scale model is developed to calculate the effective reaction rate considering the transient diffusion and chemical reactions in the particle scale,i.e.,the scale of the single catalyst particle.A modified sub-grid drag model is proposed to consider the effects of the meso-scale and chemical reactions on the heterogeneous gas-solid interaction,where the meso-scale is between the single particle and the whole reactor and featured with the particle cluster.Subsequently,a coupled model is developed by integrating the particle-scale and modified sub-grid drag models into CFD.Moreover,the coupled model is validated to achieve accurate predictions on the CO methanation process in a CFB riser.Notably,the coupled model can be performed with a coarse grid(∼58 times particle diameter)and a large time step(0.005 s)to accelerate the simulation.By simply changing the reaction kinetics,different gas-solid catalytic reaction systems can be simulated by using the coupled model.展开更多
The oxidative dehydrogenation of propane with CO_(2)(CO_(2)-ODP)is a promising technology for the efficient production of propene in tandem with CO_(2)reduction to CO.However,the rational design of high-performance ca...The oxidative dehydrogenation of propane with CO_(2)(CO_(2)-ODP)is a promising technology for the efficient production of propene in tandem with CO_(2)reduction to CO.However,the rational design of high-performance catalysts for this green process is still challenged by limited understanding of the nature of active sites and the reaction mechanism.In this work,the effects of SnO_(2) promoter on Pt/CeO_(2)activity and propene selectivity in CO_(2)-ODP are elucidated through varying the Sn/Pt molar ratio.When the ratio increases,propane conversion gradually decreases,while the propene selectivity increases.These dependences are explained by increasing the electron density of Pt through the promoter.The strength of this effect is determined by the Sn/Pt ratio.Owing to the electronic changes of Pt,CO_(2)-ODP becomes more favorable than the undesired CO_(2)reforming of propane.Sn-modified Pt–O–Ce bonds are reasonably revealed as the active sites for CO_(2)-ODP occurring through a redox mechanism involving the activation of CO_(2)over oxygen vacancies at Sn-modified Pt and CeO_(2)boundaries.These atomic-scale understandings are important guidelines for purposeful development of high-performance Pt-based catalysts for CO_(2)-ODP.展开更多
A betaine-type styrene monomer with the quaternary ammonium-borate anion inner-salt pair was synthesized through the quatemization reaction and polymerized to afford the target polybetaine of poly(4-vinylbenzyl methy...A betaine-type styrene monomer with the quaternary ammonium-borate anion inner-salt pair was synthesized through the quatemization reaction and polymerized to afford the target polybetaine of poly(4-vinylbenzyl methyl-diethanol ammonium borate) (PVMAB). The chemical structures of the monomer and polymer were well demonstrated with 1H-NMR and llB-NMR spectra analysis. The thermal-sensitive experiment showed that PVMAB in water afforded gradually well- defined sigmoidal transmittance-temperature (T-t) curves along with the increasing polymer concentration. However, the phase transition temperatures at the bottom of the S-shaped curves were always below l0 ~C due to the very weak zwitterionic association of the ammonium-borate inner-salt pairs. The UCST phase transition could also be tuned by changing the ethanol content in the ethanol/water mixture. And the cytotoxicity experiment demonstrated the good biomimetic property of PVMAB. This study enriches the toolbox of polybetaines by introducing the quaternary ammonium- borate anion zwitterionic pair in the repeat units, therefore broadens the scope of synthetic polybetaines.展开更多
Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties...Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties of the supported metal nanoparticles(NPs)and promote the selectivity to amines.Herein,Pt NPs were immobilized on Fe OOH,Fe_(3)O_(4)andα-Fe_2O_(3)nanorods to synthesize a series of iron compounds supported Pt catalysts by liquid phase reduction method.Chemoselective hydrogenation of 3-nitrostyrene to 3-aminostyrene was used as probe reaction to evaluate the performance of the catalysts.The results show that Pt/Fe OOH exhibits the highest selectivity and activity.Fe OOH support with pores and-OH groups can tune the electronic structure of Pt NPs.The positive charge of Pt NPs supported on Fe OOH is key factor for improving the catalytic performance.展开更多
The ruthenium-catalyzed intermolecular cascade cyclization of aromatic acids with aromatic aldehydes, which involves the direct insertion of C–H bond into a polar C=O bond and the successive intramolecular nucleophil...The ruthenium-catalyzed intermolecular cascade cyclization of aromatic acids with aromatic aldehydes, which involves the direct insertion of C–H bond into a polar C=O bond and the successive intramolecular nucleophilic substitution, was developed for the synthesis of 3-substituted phthalides in good to excellent yields. This one-pot procedure characterizes in a short reaction time, the cheaper Ru(II) as a catalyst, readily available acids and aldehydes as starting materials, and water as the only theoretical by-product.These merits make the protocol an efficient and cost-effective route for the synthesis of 3-substituted phthalides.展开更多
基金supported by the National Natural Science Foundation of China(21902097,21636006 and 21761132025)the China Postdoctoral Science Foundation(2019M653861XB)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JQ-409)the Fundamental Research Funds for the Central Universities(GK201901001 and GK202003035)。
文摘Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.
基金the National Natural Science Foundation of China(U1862116)the National Key Research and Development Program of China(2018YFB0604600-04)the Fundamental Research Funds for the Central Universities(GK201901001)。
文摘We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) was prepared via the one-pot evaporation induced self-assembly method. By using the incipient impregnation method, different amounts of free Ni were loaded over Ni-OMA(Ni/NiOMA) at a fixed total NiO content of 15 wt%. Characterization results confirmed the formation of wellstructured Ni-OMA, and the ordered structure was still well preserved even after impregnating NiO at a content of as high as 12 wt%. The catalysts were evaluated for the CO methanation as a model reaction under varied conditions. Importantly, the activity and stability of Ni/Ni-OMA for the titled reaction were significantly regulated by simply changing the ratio of the confined to free Ni. Over the optimum catalyst of NiO(2 wt%)/NiO(13 wt%)-OMA, the high activity at a temperature of as low as 300 ℃ was achieved with the space-time yield of methane over 7.6 g gcat-1 h-1 while a long-term stability for a time-onstream of 400 h was confirmed without an observable deactivation under the conditions of 600 ℃ and an extremely high gas hourly space velocity of 120,000 mL g-1 h-1. The results were well explained as the integrated merits of the free Ni for a high dispersion and the confined Ni in OMA for the anti-sintering property.
基金financially supported by the National Natural Science Foundation of China(Nos.51803115 and 21636006)the Fundamental Research Funds for the Central Universities(Nos.GK201901001,2021CSLY008,2021CSZL003 and GK202103032)the Innovation Capability Support Program of Shaanxi(No.2020TD-024)。
文摘Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design to develop such a material.The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene(SEBS-g-COOH)as the elastic substrate,and a synthesized azobenzene derivative as the functional filler(Azo12).By surface treatment using acidic and base solutions,the carboxyl groups on the surface can reversibly transform into carboxylate groups,which render the composite tunable hygroscopic actuating functionality.On another aspect,the added filler undergoes trans-to-cis isomerization when exposed to UV light irradiation,leading to liquefaction of the crystalline aggregates formed by Azo12 molecules.The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure.This reversible change in crystralline structure is utilized to realize the shape memory property,and 5 wt%of Azo12addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity.The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior.The proposed method can be extend to designing different composites with the demonstrated functionalities.
基金Project supported by the National Natural Science Foundation of China(U1862116)the Fundamental Research Funds for the Central Universities(GK201901001).
文摘The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively evaluated for pressurized carbon dioxide reforming of methane(CRM)under severe conditions of 750℃,1.0 MPa,CH_(4)/CO_(2)=1,and gas hourly space velocity of 53200 mL/(g·h).The addition of rare earth metal oxide does not affect the Ni dispersion,and all of the catalysts show similarly high Ni dispersion of16.0%±0.2%.As a result,all of the catalysts are highly active for pressurized CRM,the initial CH_(4) conversions of which approach the thermodynamic equilibrium(47.0%±0.2%).In contrast,a clearly favorable effect of the added rare earth metal oxide on the stability of Ni-SiO_(2)was revealed from the CRM results for a time-on-stream of 50 h,and the highest stability without an observable decrease in the conversions of CH_(4)and CO_(2)was obtained over Ni-7Sm_(2)O_(3)-SiO_(2).Based on the characterization results of thermogravimetric differential scanning calorimetry(TG-DSC)and transmission electron microscopy(TEM),the improved stability of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2)for pressurized CRM was manifested mainly as the suppressed formation of carbon nanotubes over the catalyst surface,the extent of which is dependent on the specific rare earth metal oxide.Moreover,the consecutive temperature programmed surface reaction of CH_(4),CO_(2),and O_(2)over Ni-7Sm_(2)O_(3)-SiO_(2)vigorously reveals that the addition of Sm_(2)O_(3)into Ni-SiO_(2)inhibits the CH_(4)decomposition but enhances the oxidization of the carbon species by CO_(2),leading to the well-balanced rates for forming and removing the coke over Ni-7Sm_(2)O_(3)-SiO_(2).These findings are not only beneficial to deeply understanding the promotional effect of rare earth metal oxides on Ni-based catalysts for CRM,but also important for extending the application of the less studied rare earth metal oxides as promoters for the metalsupported catalysts.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 22108167,U1862116,and 22038011)the Fundamental Research Funds for the Central Universities(grant number GK202103036).
文摘The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fluidized bed(CFB)methanation reactors.In this work,a particle-scale model is developed to calculate the effective reaction rate considering the transient diffusion and chemical reactions in the particle scale,i.e.,the scale of the single catalyst particle.A modified sub-grid drag model is proposed to consider the effects of the meso-scale and chemical reactions on the heterogeneous gas-solid interaction,where the meso-scale is between the single particle and the whole reactor and featured with the particle cluster.Subsequently,a coupled model is developed by integrating the particle-scale and modified sub-grid drag models into CFD.Moreover,the coupled model is validated to achieve accurate predictions on the CO methanation process in a CFB riser.Notably,the coupled model can be performed with a coarse grid(∼58 times particle diameter)and a large time step(0.005 s)to accelerate the simulation.By simply changing the reaction kinetics,different gas-solid catalytic reaction systems can be simulated by using the coupled model.
基金the National Natural Science Foundation of China(No.21636006)the Fundamental Research Funds for the Central Universities(No.GK201901001).G.Q.Y.acknowledges support from the China Scholarship Council.
文摘The oxidative dehydrogenation of propane with CO_(2)(CO_(2)-ODP)is a promising technology for the efficient production of propene in tandem with CO_(2)reduction to CO.However,the rational design of high-performance catalysts for this green process is still challenged by limited understanding of the nature of active sites and the reaction mechanism.In this work,the effects of SnO_(2) promoter on Pt/CeO_(2)activity and propene selectivity in CO_(2)-ODP are elucidated through varying the Sn/Pt molar ratio.When the ratio increases,propane conversion gradually decreases,while the propene selectivity increases.These dependences are explained by increasing the electron density of Pt through the promoter.The strength of this effect is determined by the Sn/Pt ratio.Owing to the electronic changes of Pt,CO_(2)-ODP becomes more favorable than the undesired CO_(2)reforming of propane.Sn-modified Pt–O–Ce bonds are reasonably revealed as the active sites for CO_(2)-ODP occurring through a redox mechanism involving the activation of CO_(2)over oxygen vacancies at Sn-modified Pt and CeO_(2)boundaries.These atomic-scale understandings are important guidelines for purposeful development of high-performance Pt-based catalysts for CO_(2)-ODP.
基金financially supported by the National Natural Science Foundation of China(No.21374056)the Program for Changjiang Scholars and Innovative Research Team in Universities(IRT 14R33)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(NSBRP-SPC 2014JM2051)the Program of Introducing Talents of Discipline to Universities(B14041)Shaanxi Innovative Research Team for Key Science and Technology(2012KCT-21,2013KCT-17)the One Hundred Plan of Shaanxi Province
文摘A betaine-type styrene monomer with the quaternary ammonium-borate anion inner-salt pair was synthesized through the quatemization reaction and polymerized to afford the target polybetaine of poly(4-vinylbenzyl methyl-diethanol ammonium borate) (PVMAB). The chemical structures of the monomer and polymer were well demonstrated with 1H-NMR and llB-NMR spectra analysis. The thermal-sensitive experiment showed that PVMAB in water afforded gradually well- defined sigmoidal transmittance-temperature (T-t) curves along with the increasing polymer concentration. However, the phase transition temperatures at the bottom of the S-shaped curves were always below l0 ~C due to the very weak zwitterionic association of the ammonium-borate inner-salt pairs. The UCST phase transition could also be tuned by changing the ethanol content in the ethanol/water mixture. And the cytotoxicity experiment demonstrated the good biomimetic property of PVMAB. This study enriches the toolbox of polybetaines by introducing the quaternary ammonium- borate anion zwitterionic pair in the repeat units, therefore broadens the scope of synthetic polybetaines.
基金the financial support provided by the National Natural Science Foundation of China(Nos.22072164,21773269,51932005 and 21761132025)the Liao Ning Revitalization Talents Program(No.XLYC1807175)。
文摘Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties of the supported metal nanoparticles(NPs)and promote the selectivity to amines.Herein,Pt NPs were immobilized on Fe OOH,Fe_(3)O_(4)andα-Fe_2O_(3)nanorods to synthesize a series of iron compounds supported Pt catalysts by liquid phase reduction method.Chemoselective hydrogenation of 3-nitrostyrene to 3-aminostyrene was used as probe reaction to evaluate the performance of the catalysts.The results show that Pt/Fe OOH exhibits the highest selectivity and activity.Fe OOH support with pores and-OH groups can tune the electronic structure of Pt NPs.The positive charge of Pt NPs supported on Fe OOH is key factor for improving the catalytic performance.
基金supported by the National Science Foundation of China (21572122, 21376146)Shaanxi Innovative Team of Key Science and Technology (2013KCT-17)the Fundamental Research Funds for the Central Universities (GK201703019, GK 201601005)
文摘The ruthenium-catalyzed intermolecular cascade cyclization of aromatic acids with aromatic aldehydes, which involves the direct insertion of C–H bond into a polar C=O bond and the successive intramolecular nucleophilic substitution, was developed for the synthesis of 3-substituted phthalides in good to excellent yields. This one-pot procedure characterizes in a short reaction time, the cheaper Ru(II) as a catalyst, readily available acids and aldehydes as starting materials, and water as the only theoretical by-product.These merits make the protocol an efficient and cost-effective route for the synthesis of 3-substituted phthalides.