期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma 被引量:1
1
作者 zhong-xing shi Chang-Fu Li +6 位作者 Li-Feng Zhao Zhong-Qi Sun Li-Ming Cui Yan-Jie Xin Dong-Qing Wang Tan-Rong Kang Hui-Jie Jiang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第4期361-369,共9页
Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treat... Background:According to clinical practice guidelines,transarterial chemoembolization(TACE)is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma(HCC).Early prediction of treatment response can help patients choose a reasonable treatment plan.This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival.Methods:A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed.The tumor response was assessed by modified response evaluation criteria in solid tumors(mRECIST),and the response of the first TACE to each session and its correlation with overall survival were evaluated.The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator(LASSO),and four machine learning models were built with different types of regions of interest(ROIs)(tumor and corresponding tissues)and the model with the best performance was selected.The predictive performance was assessed with receiver operating characteristic(ROC)curves and calibration curves.Results:Of all the models,the random forest(RF)model with peritumor(+10 mm)radiomic signatures had the best performance[area under ROC curve(AUC)=0.964 in the training cohort,AUC=0.949 in the validation cohort].The RF model was used to calculate the radiomic score(Rad-score),and the optimal cutoff value(0.34)was calculated according to the Youden’s index.Patients were then divided into a high-risk group(Rad-score>0.34)and a low-risk group(Rad-score≤0.34),and a nomogram model was successfully established to predict treatment response.The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves.Multivariate Cox regression identified six independent prognostic factors for overall survival,including male[hazard ratio(HR)=0.500,95%confidence interval(CI):0.260–0.962,P=0.038],alpha-fetoprotein(HR=1.003,95%CI:1.002–1.004,P<0.001),alanine aminotransferase(HR=1.003,95%CI:1.001–1.005,P=0.025),performance status(HR=2.400,95%CI:1.200–4.800,P=0.013),the number of TACE sessions(HR=0.870,95%CI:0.780–0.970,P=0.012)and Rad-score(HR=3.480,95%CI:1.416–8.552,P=0.007).Conclusions:The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE. 展开更多
关键词 Hepatocellular carcinoma Transarterial chemoembolization Radiomics Treatment response Prediction
下载PDF
Quantitative dual-energy computed tomography texture analysis predicts the response of primary small hepatocellular carcinoma to radiofrequency ablation 被引量:1
2
作者 Jin-Ping Li Sheng Zhao +5 位作者 Hui-Jie Jiang Hao Jiang Lin-Han Zhang zhong-xing shi Ting-Ting Fan Song Wang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2022年第6期569-576,共8页
Background:Radiofrequency ablation(RFA)is one of the effective therapeutic modalities in patients with hepatocellular carcinoma(HCC).However,there is no proper method to evaluate the HCC response to RFA.This study aim... Background:Radiofrequency ablation(RFA)is one of the effective therapeutic modalities in patients with hepatocellular carcinoma(HCC).However,there is no proper method to evaluate the HCC response to RFA.This study aimed to establish and validate a clinical prediction model based on dual-energy com-puted tomography(DECT)quantitative-imaging parameters,clinical variables,and CT texture parameters.Methods:We enrolled 63 patients with small HCC.Two to four weeks after RFA,we performed DECT scanning to obtain DECT-quantitative parameters and to record the patients’clinical baseline variables.DECT images were manually segmented,and 56 CT texture features were extracted.We used LASSO al-gorithm for feature selection and data dimensionality reduction;logistic regression analysis was used to build a clinical model with clinical variables and DECT-quantitative parameters;we then added texture features to build a clinical-texture model based on clinical model.Results:A total of six optimal CT texture analysis(CTTA)features were selected,which were statis-tically different between patients with or without tumor progression(P<0.05).When clinical vari-ables and DECT-quantitative parameters were included,the clinical models showed that albumin-bilirubin grade(ALBI)[odds ratio(OR)=2.77,95%confidence interval(CI):1.35-6.65,P=0.010],λAP(40-100 keV)(OR=3.21,95%CI:3.16-5.65,P=0.045)and IC AP(OR=1.25,95%CI:1.01-1.62,P=0.028)were asso-ciated with tumor progression,while the clinical-texture models showed that ALBI(OR=2.40,95%CI:1.19-5.68,P=0.024),λAP(40-100 keV)(OR=1.43,95%CI:1.10-2.07,P=0.019),and CTTA-score(OR=2.98,95%CI:1.68-6.66,P=0.001)were independent risk factors for tumor progression.The clinical model,clinical-texture model,and CTTA-score all performed well in predicting tumor progression within 12 months after RFA(AUC=0.917,0.962,and 0.906,respectively),and the C-indexes of the clinical and clinical-texture models were 0.917 and 0.957,respectively.Conclusions:DECT-quantitative parameters,CTTA,and clinical variables were helpful in predicting HCC progression after RFA.The constructed clinical prediction model can provide early warning of potential tumor progression risk for patients after RFA. 展开更多
关键词 Hepatocellular carcinoma DUAL-ENERGY Radiofrequency ablation Tumor response Texture analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部