Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described b...Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described by using the lattice Boltzmann(LB)scheme.The anisotropic streaming-relaxation operation fitting into the LB framework is implemented to model interface advancing with various preferred orientations.Crystal pattern evolutions are then numerically investigated in the conditions of with and without melt flows.It is found that melt flows can significantly influence heat transfer,crystal growth behavior,and phase distributions.The crystal morphological transition from dendrite,seaweed to cauliflower-like patterns occurs with the increase of undercoolings.The interface normal angles and curvature distributions are proposed to quantitatively characterize crystal patterns.The results demonstrate that the distributions are corresponding to crystal morphological features,and they can be therefore used to describe the evolution of crystal patterns in a quantitative way.展开更多
Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci...Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.展开更多
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must...With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.展开更多
Tumor cell clusters are regarded as critical factors in cancer pathophysiology,and increasing evidence of their higher treatment resistance and metastasis compared to single tumor cells has been obtained.However,exist...Tumor cell clusters are regarded as critical factors in cancer pathophysiology,and increasing evidence of their higher treatment resistance and metastasis compared to single tumor cells has been obtained.However,existing cell separation methods that are designed for single tumor cells cannot be used to simultaneously purify tumor cell clusters.To address this problem,we demonstrated a microfluidic approach for the high-throughput,continuous-flow ternary separation of single tumor cells,tumor cell clusters,and WBCs from clinical pleural or abdominal effusions by coupling slanted spiral channels and periodic contraction-expansion arrays.We first systematically explored the influence of particle size and flow rate on particle focusing.The separation performance indicated that 94.0%of WBCs were removed and more than 97%of MDA-MB-231 tumor cells were recovered at a high flow rate of 3500µL/min.Moreover,more than 90%of tumor cell clusters were effectively preserved after separation.Finally,we successfully applied our device for the ternary separation of single tumor cells,tumor cell clusters,and WBCs from different malignant effusions collected from patients with metastatic cancer.Thus,our spiral-contraction-expansion device has potential as a sample pretreatment tool for the cytological diagnosis of malignant effusions.展开更多
Flow cytometry has become a powerful cell analysis technique for modern clinical diagnosis and biological research. Even though great success has been achieved using flow cytometry, this technique still suffers from s...Flow cytometry has become a powerful cell analysis technique for modern clinical diagnosis and biological research. Even though great success has been achieved using flow cytometry, this technique still suffers from some limitations, such as the use of specific immune biomarkers and fluorescent dyes. In contrast, the novel deformability cytometry achieves label-free identification of cells according to their different mechanical properties.展开更多
An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the hel...An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate, α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51728601 and 51771118)the Fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP201901)the Fundamental Research Funds for the Central Universities,China(Grant No.2242019K1G003).
文摘Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described by using the lattice Boltzmann(LB)scheme.The anisotropic streaming-relaxation operation fitting into the LB framework is implemented to model interface advancing with various preferred orientations.Crystal pattern evolutions are then numerically investigated in the conditions of with and without melt flows.It is found that melt flows can significantly influence heat transfer,crystal growth behavior,and phase distributions.The crystal morphological transition from dendrite,seaweed to cauliflower-like patterns occurs with the increase of undercoolings.The interface normal angles and curvature distributions are proposed to quantitatively characterize crystal patterns.The results demonstrate that the distributions are corresponding to crystal morphological features,and they can be therefore used to describe the evolution of crystal patterns in a quantitative way.
基金Supported by National Natural Science Foundation of China(Grant Nos.52272433 and 11874110)Jiangsu Provincial Key R&D Program(Grant No.BE2021084)Technical Support Special Project of State Administration for Market Regulation(Grant No.2022YJ11).
文摘Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.
基金Supported by National Basic Scientific Research Project(Grant No.JCKY2017110B001)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China(Grant No.KYCX20_0080)。
文摘With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.
基金supported by the National Natural Science Foundation of China(52375562,51875103,and 81727801)the Natural Science Foundation of Jiangsu Province(BK20190064)the‘333’Project of Jiangsu Province.
文摘Tumor cell clusters are regarded as critical factors in cancer pathophysiology,and increasing evidence of their higher treatment resistance and metastasis compared to single tumor cells has been obtained.However,existing cell separation methods that are designed for single tumor cells cannot be used to simultaneously purify tumor cell clusters.To address this problem,we demonstrated a microfluidic approach for the high-throughput,continuous-flow ternary separation of single tumor cells,tumor cell clusters,and WBCs from clinical pleural or abdominal effusions by coupling slanted spiral channels and periodic contraction-expansion arrays.We first systematically explored the influence of particle size and flow rate on particle focusing.The separation performance indicated that 94.0%of WBCs were removed and more than 97%of MDA-MB-231 tumor cells were recovered at a high flow rate of 3500µL/min.Moreover,more than 90%of tumor cell clusters were effectively preserved after separation.Finally,we successfully applied our device for the ternary separation of single tumor cells,tumor cell clusters,and WBCs from different malignant effusions collected from patients with metastatic cancer.Thus,our spiral-contraction-expansion device has potential as a sample pretreatment tool for the cytological diagnosis of malignant effusions.
基金supported by the National Natural Science Foundation of China (51875103, 81727801 and 51775111)the Natural Science Foundation of Jiangsu Province (BK20190064)+1 种基金the Six Talent Peaks Project of Jiangsu Province (SWYY-005)the Zhishan Youth Scholar Program of SEU。
文摘Flow cytometry has become a powerful cell analysis technique for modern clinical diagnosis and biological research. Even though great success has been achieved using flow cytometry, this technique still suffers from some limitations, such as the use of specific immune biomarkers and fluorescent dyes. In contrast, the novel deformability cytometry achieves label-free identification of cells according to their different mechanical properties.
基金financially supported by the National Key Research and Development Program of China(2018YFA0704103)the National Natural Science Foundation of China(81971750 and 61821002)+1 种基金partially by the Natural Science Foundation of Jiangsu Province(BK20191266)the Jiangsu Province 333 High-level Talents Training Project。
基金This work was supported by the National Basic Research Program of China (Nos. 2011CB707601, 2011CB707605, and 2012CB934102), the National Science and Technology Supporting Program (No. 2012BAJ11B01), the Creative Research of National Natural Science Foundation of China (No. 61021064), and the National Natural Science Foundation of China (Nos. 60936001, 91123037 and 81201358).
文摘An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate, α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.