In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k ...In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.展开更多
The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The ex...The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.展开更多
The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in...The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.展开更多
Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the ...Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70 °C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge(LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge(HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging.The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage.展开更多
基金supported in part by National Basic Research Program of China(973 Project)(No.2014CB239501)National Natural Science Foundation of China(Nos.51707100,51377089)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE16208)China Postdoctoral Science Foundation(No.2016M591176)
文摘In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.
基金supported by the program for Major Project of the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)and(VSN 201602),(2017-K-23)
文摘The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.
基金support from National Natural Science Foundation of China(No.51977186)the China Postdoctoral Science Foundation(No.2019M650029)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the National Key R&D Program of China(No.2017YFB0902704)the State Key Development Program of Basic Research of China(973 Program)(No.2014CB239501)the Science and Technology Project of the State Grid Corp.of China(No.52110418001Y).
文摘The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.
基金supported by the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)
文摘Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70 °C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge(LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge(HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging.The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage.