To effectively improve the poor engineering properties of loess and enhance its seismic performance,the industrial by-product lignin is used as a modified material.Based on lots of dynamic triaxial tests,the dynamic e...To effectively improve the poor engineering properties of loess and enhance its seismic performance,the industrial by-product lignin is used as a modified material.Based on lots of dynamic triaxial tests,the dynamic elastic modulus and damping ratio of lignin-modified loess were tested.The effects of lignin content on the dynamic elastic modulus and damping ratio of lignin-modified loess were analyzed.Combined with scanning electron microscopy(SEM)and X-ray diffraction(XRD),the microscopic mechanism of lignin to improve the dynamic properties of loess was studied.The results show that lignin can effectively modify the dynamic deformation of loess under dynamic load.Under the same dynamic stress condition,the dynamic strain of lignin-modified loess is smaller than compacted loess.The dynamic elastic modulus of modified loess with different lignin content are quite different,but both decrease with the increase of dynamic strain.And the dynamic elastic modulus of modified loess is greater than compacted loess.The maximum dynamic elastic modulus of modified loess with a lignin content of 1%are significantly greater than others.Under the same dynamic strain condition,the damping ratio of lignin-modified loess is smaller than compacted loess.Lignin can effectively fill loess pores and cement loess particles.Compared with compacted loess,no new mineral components are generated in the lignin-modified loess.The optimum lignin content of dynamics characteristic of modified loess is present,and the optimum lignin content is 1%.展开更多
In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber ...In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles.At the same time,as eco-environmental protection has become the focus,which has been paid more and more attention to,it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives.The purpose of this paper uses new environmental-friendly improved materials to reinforce the engineering performance of loess,improve the ability of loess to resist freeze-thaw cycles,and reduce the negative impact on the ecological environment.To reinforce the engineering performance of loess and improve its ability to resist freeze-thaw cycles,lignin fiber is used as a reinforcing material.Through a series of laboratory tests,the unconfined compressive strength(UCS)of lignin fiber-reinforced loess under different freeze-thaw cycles was studied.The effects of lignin fiber content and freeze-thaw cycles on the strength and deformation modulus of loess were analyzed.Combined with the microstructure features,the change mechanism of lignin fiber-reinforced loess strength under freeze-thaw cycles was discussed.The results show that lignin fiber can improve the UCS of loess under freeze-thaw cycles,but the strengthening effect no longer increases with the increase of fiber content.When the fiber content is less than 1%,the UCS growth rate of loess is the fastest under freeze-thaw cycles.And the UCS of loess with 1%fiber content is the most stable under freeze-thaw cycles.The freeze-thaw cycles increase the deformation modulus of loess with 1%fiber content,and its ability to resist deformation is obviously better than loess with 1.5%,2%and 3%fiber content.The fiber content over 1%will weaken the strengthening effect of lignin fiber-reinforced loess,and the optimum fiber content of lignin fiber-reinforced loess under freeze-thaw cycles is 1%.展开更多
Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activa...Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.展开更多
Herein,we report the high De-NOx performance of the A-site defective perovskite-based Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst.The formation of the defective perovskite structure can be proved by both the increased Mn^(4+)...Herein,we report the high De-NOx performance of the A-site defective perovskite-based Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst.The formation of the defective perovskite structure can be proved by both the increased Mn^(4+)/Mn^(3+) ratio and serious lattice contraction due to cationic nonstoichiometry.It promotes the Sr doping into perovskite lattice and reduces the formation of the SrCO_(3) phase.Our results demonstrate that below 300℃ the A-site defective perovskite can be more efficiently regenerated than the SrCO_(3) phase as NOx storage sites due to the latter’s stronger basicity,and also exhibits the higher NO oxidation ability than the A-site stoichiometric and excessive catalysts.Both factors promote the lowtemperature De-NOx activity of the Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst through improving its NOx trapping efficiency.Nevertheless,above 300℃,the NOx reduction becomes the determinant of the De-NOx activity of the perovskite-based catalysts.A-site defects can weaken the interactions between perovskite and Pd,inducing activation of Pd sites by in-situ transformation from PdO to metallic Pd in the alternative leanburn/fuel-rich atmospheric alternations,which boosts the De-NOx activity of the Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst.The Pd/L_(0.5)Sr_(0.3)MnO_(3) catalyst exhibits the high sulfur tolerance as well.These findings provide insight into optimizing the structural properties and catalytic activities of the perovskite-based catalysts via tuning formulation,and have potential to be applied for various related catalyst systems.展开更多
基金This study was supported in part by the Funding of Science for Earthquake Resilience(Grant Nos.XH20057,XH21034,XH21036Y)the National Natural Science Foundation of China(Nos.51778590,51408567)+1 种基金the grant of the Fundamental Research Funding for the Institute of Earthquake Forecasting,China Earthquake Administration(Grant Nos.2018IESLZ06,2016IESLZ01)the Science and Technology Projects Funding for Lanzhou City(Grant No.2018-1-123).
文摘To effectively improve the poor engineering properties of loess and enhance its seismic performance,the industrial by-product lignin is used as a modified material.Based on lots of dynamic triaxial tests,the dynamic elastic modulus and damping ratio of lignin-modified loess were tested.The effects of lignin content on the dynamic elastic modulus and damping ratio of lignin-modified loess were analyzed.Combined with scanning electron microscopy(SEM)and X-ray diffraction(XRD),the microscopic mechanism of lignin to improve the dynamic properties of loess was studied.The results show that lignin can effectively modify the dynamic deformation of loess under dynamic load.Under the same dynamic stress condition,the dynamic strain of lignin-modified loess is smaller than compacted loess.The dynamic elastic modulus of modified loess with different lignin content are quite different,but both decrease with the increase of dynamic strain.And the dynamic elastic modulus of modified loess is greater than compacted loess.The maximum dynamic elastic modulus of modified loess with a lignin content of 1%are significantly greater than others.Under the same dynamic strain condition,the damping ratio of lignin-modified loess is smaller than compacted loess.Lignin can effectively fill loess pores and cement loess particles.Compared with compacted loess,no new mineral components are generated in the lignin-modified loess.The optimum lignin content of dynamics characteristic of modified loess is present,and the optimum lignin content is 1%.
基金This study was supported in part by the Earthquake Science and Technology Development Fund,Gansu Earthquake Agency(Grant Nos.2021M7,2019Q08)the Construction Project of Scientific Research team of Seismological Bureau of Gansu Province(Grant No.2020TD-01-01)the National Natural Science Foundation of China(Grant No.51778590).
文摘In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles.At the same time,as eco-environmental protection has become the focus,which has been paid more and more attention to,it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives.The purpose of this paper uses new environmental-friendly improved materials to reinforce the engineering performance of loess,improve the ability of loess to resist freeze-thaw cycles,and reduce the negative impact on the ecological environment.To reinforce the engineering performance of loess and improve its ability to resist freeze-thaw cycles,lignin fiber is used as a reinforcing material.Through a series of laboratory tests,the unconfined compressive strength(UCS)of lignin fiber-reinforced loess under different freeze-thaw cycles was studied.The effects of lignin fiber content and freeze-thaw cycles on the strength and deformation modulus of loess were analyzed.Combined with the microstructure features,the change mechanism of lignin fiber-reinforced loess strength under freeze-thaw cycles was discussed.The results show that lignin fiber can improve the UCS of loess under freeze-thaw cycles,but the strengthening effect no longer increases with the increase of fiber content.When the fiber content is less than 1%,the UCS growth rate of loess is the fastest under freeze-thaw cycles.And the UCS of loess with 1%fiber content is the most stable under freeze-thaw cycles.The freeze-thaw cycles increase the deformation modulus of loess with 1%fiber content,and its ability to resist deformation is obviously better than loess with 1.5%,2%and 3%fiber content.The fiber content over 1%will weaken the strengthening effect of lignin fiber-reinforced loess,and the optimum fiber content of lignin fiber-reinforced loess under freeze-thaw cycles is 1%.
文摘Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.
基金the National Natural Science Foundation of China(21878213)。
文摘Herein,we report the high De-NOx performance of the A-site defective perovskite-based Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst.The formation of the defective perovskite structure can be proved by both the increased Mn^(4+)/Mn^(3+) ratio and serious lattice contraction due to cationic nonstoichiometry.It promotes the Sr doping into perovskite lattice and reduces the formation of the SrCO_(3) phase.Our results demonstrate that below 300℃ the A-site defective perovskite can be more efficiently regenerated than the SrCO_(3) phase as NOx storage sites due to the latter’s stronger basicity,and also exhibits the higher NO oxidation ability than the A-site stoichiometric and excessive catalysts.Both factors promote the lowtemperature De-NOx activity of the Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst through improving its NOx trapping efficiency.Nevertheless,above 300℃,the NOx reduction becomes the determinant of the De-NOx activity of the perovskite-based catalysts.A-site defects can weaken the interactions between perovskite and Pd,inducing activation of Pd sites by in-situ transformation from PdO to metallic Pd in the alternative leanburn/fuel-rich atmospheric alternations,which boosts the De-NOx activity of the Pd/La_(0.5)Sr_(0.3)MnO_(3) catalyst.The Pd/L_(0.5)Sr_(0.3)MnO_(3) catalyst exhibits the high sulfur tolerance as well.These findings provide insight into optimizing the structural properties and catalytic activities of the perovskite-based catalysts via tuning formulation,and have potential to be applied for various related catalyst systems.