期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of carbon and yttrium co-doping on the photocatalytic activity of mixed phase TiO_2 被引量:5
1
作者 Honglin Gao Jianmei Liu +3 位作者 Jin Zhang zhongqi zhu Genlin Zhang Qingju Liu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第10期1688-1696,共9页
Mixed phase TiO2photocatalysts doped with C and Y were synthesized by a sol‐gel process.The effects of C and Y doping and annealing temperatures on the structural and optical properties,and photocatalytic activity we... Mixed phase TiO2photocatalysts doped with C and Y were synthesized by a sol‐gel process.The effects of C and Y doping and annealing temperatures on the structural and optical properties,and photocatalytic activity were investigated.We found that both C and Y doping can broaden the absorption spectrum of TiO2to the visible light region and inhibit recombination of photogenerated electron/hole pairs.The incorporation of Y into the TiO2lattice inhibited growth of crystalline grains,which increased the specific surface area and enhanced the photocatalytic activity.The photocatalytic performance of the samples was investigated in the photocatalytic degradation of methyl blue under visible light irradiation.The rate of methyl blue degradation over the(C,Y)‐co‐doped TiO2sample was much higher than those of undoped TiO2,C‐TiO2,and Y‐TiO2.Additionally,the apparent first‐order rate constant of the co‐doped sample was3.5times as large as that of undoped mix phase TiO2under the same experimental conditions.The enhanced photocatalytic activity can be attributed to the synergic effect of(C,Y)‐co‐doping and the formation of an appropriate crystalline structure. 展开更多
关键词 Titanium dioxide Co‐doping Mixed phase Phase control Visible light photocatalysis
下载PDF
Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks 被引量:12
2
作者 zhongqi zhu Zhiyuan Gong +7 位作者 Piao Qu Ziyong Li Sefiu Abolaji Rasaki Zhiyuan Liu Pei Wang Changyong Liu Changshi Lao Zhangwei Chen 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期279-290,共12页
Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfy... Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y_(2)O_(3)-stabilized ZrO_(2)(8 YSZ) electrolyte ceramic ink with long-term stability and high solid loading(> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8 YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium(PAANH4) and polyacrylic acid(PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8 YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8 YSZ inks(20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance. 展开更多
关键词 inkjet printing water-based ceramic ink solid oxide fuel cell(SOFC)electrolyte 8YSZ ink stability rheological properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部