The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help recon...The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help reconstruct the relative frequency of earthquakes.Identifying seismically induced seismites,which carry abundant seismic information from numerous SSDS,is both critical and challenging.Studying the deformation mechanism of SSDS and learning about the common criteria of seismically induced SSDS improve the identification of earthquake triggers.With better research into SSDS,seismic events can be effectively captured,and temporal constraints can be carried out by 14C dating and optically stimulated luminescence(OSL)dating to identify and date the occurrence of ancient earthquakes.The present contribution primarily addresses the meaning and mechanism of SSDS and their relationship with earthquake magnitude as well as the common criteria of the SSDS induced by earthquakes.展开更多
The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Pa- leoearthquake studies have been adva...The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Pa- leoearthquake studies have been advanced by digging new trenches and combining the results with the findings of previous studies. Comprehensive analyses of the trenches revealed that 6 paleoseismic events have occurred on the Kuoluebulong segment since approximately 30 ka BP within the following successive time periods: 19.01-37.56, 18.73, 15.03-15.86, 10.96, 5.77-6.48, and 2.32 ka BP. The analyses also revealed that 6 paleoseismic events have occurred on the Dashetai segment since approximately 30 ka BP, and the successive occurrence times are 29.07, 19.12-28.23, 13.92-15.22, 9.38-9.83, 6.08--8.36, and 3.59 ka BP. The results indicate that quasi-periodic recurrences occurred along the two segments with an approximate 4 000 a mean recurrence interval. The consistent timing of the 6 events between the two segments indicates that the segments might conform to the cascade rupturing model between the two segments. As recorded by a large number of Chinese historical texts, the latest event on the Kuoluebulong segment is the historical M 8.0 earthquake occurred on November U, 7 BC.展开更多
A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of...A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of the main active faults in the fault system on the northern margin of the Hetao Basin and has produced frequent large-scale earthquakes since the Late Pleistocene. In the present study, following the segmentation regime of previous studies, we divide the fault zone into five segments, namely, the Baotou, Tuyouqi West, Tuzuoqi West, Bikeqi, and Hohhot segments, and we discuss the relationship between the drainage basin geomorphology and the piedmont fault activity in the Daqingshan area using 30 m spatial resolution Shuttle Radar Topography Mission(SRTM) digital elevation model(DEM) data. We use a range of geomorphic indices to examine the drainage basins in the Daqingshan area, including the channel steepness index(ksn), slope, hypsometric integral(HI), relief degree of land surface(RDLS), and stream lengthgradient index(SL), extracted with ArcGIS and MATLAB, and we also consider local lithologic and climate aspects. Furthermore, we compare the geomorphic indices with the slip rates of individual segments of the Daqingshan piedmont fault and paleoseismic data. The results show that the geomorphic indices of drainage basins in the Daqingshan area are primarily affected by the piedmont fault activity in the Daqingshan area. The geomorphic indices also demonstrate that piedmont fault activity has been the most intense in the middle segment of this fault system since the Late Quaternary and decreases towards the two sides.展开更多
基金the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ2019-21)the National Natural Science Foundation of China(Nos.41872227 and 41602221).
文摘The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help reconstruct the relative frequency of earthquakes.Identifying seismically induced seismites,which carry abundant seismic information from numerous SSDS,is both critical and challenging.Studying the deformation mechanism of SSDS and learning about the common criteria of seismically induced SSDS improve the identification of earthquake triggers.With better research into SSDS,seismic events can be effectively captured,and temporal constraints can be carried out by 14C dating and optically stimulated luminescence(OSL)dating to identify and date the occurrence of ancient earthquakes.The present contribution primarily addresses the meaning and mechanism of SSDS and their relationship with earthquake magnitude as well as the common criteria of the SSDS induced by earthquakes.
基金supported by the Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2016-11)the National Natural Science Foundation of China (No. 41602221)the 1 : 50 000 Geological Mapping of the Sertengshan Piedmont Fault (No. 201408023)
文摘The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Pa- leoearthquake studies have been advanced by digging new trenches and combining the results with the findings of previous studies. Comprehensive analyses of the trenches revealed that 6 paleoseismic events have occurred on the Kuoluebulong segment since approximately 30 ka BP within the following successive time periods: 19.01-37.56, 18.73, 15.03-15.86, 10.96, 5.77-6.48, and 2.32 ka BP. The analyses also revealed that 6 paleoseismic events have occurred on the Dashetai segment since approximately 30 ka BP, and the successive occurrence times are 29.07, 19.12-28.23, 13.92-15.22, 9.38-9.83, 6.08--8.36, and 3.59 ka BP. The results indicate that quasi-periodic recurrences occurred along the two segments with an approximate 4 000 a mean recurrence interval. The consistent timing of the 6 events between the two segments indicates that the segments might conform to the cascade rupturing model between the two segments. As recorded by a large number of Chinese historical texts, the latest event on the Kuoluebulong segment is the historical M 8.0 earthquake occurred on November U, 7 BC.
基金supported by a research grant from the Institute of Crustal Dynamics,China Earthquake Administration(No.ZDJ2019-21)the National Natural Science Foundation of China(Nos.41872227,41602221)。
文摘A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of the main active faults in the fault system on the northern margin of the Hetao Basin and has produced frequent large-scale earthquakes since the Late Pleistocene. In the present study, following the segmentation regime of previous studies, we divide the fault zone into five segments, namely, the Baotou, Tuyouqi West, Tuzuoqi West, Bikeqi, and Hohhot segments, and we discuss the relationship between the drainage basin geomorphology and the piedmont fault activity in the Daqingshan area using 30 m spatial resolution Shuttle Radar Topography Mission(SRTM) digital elevation model(DEM) data. We use a range of geomorphic indices to examine the drainage basins in the Daqingshan area, including the channel steepness index(ksn), slope, hypsometric integral(HI), relief degree of land surface(RDLS), and stream lengthgradient index(SL), extracted with ArcGIS and MATLAB, and we also consider local lithologic and climate aspects. Furthermore, we compare the geomorphic indices with the slip rates of individual segments of the Daqingshan piedmont fault and paleoseismic data. The results show that the geomorphic indices of drainage basins in the Daqingshan area are primarily affected by the piedmont fault activity in the Daqingshan area. The geomorphic indices also demonstrate that piedmont fault activity has been the most intense in the middle segment of this fault system since the Late Quaternary and decreases towards the two sides.