Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de...Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.展开更多
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ...The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.展开更多
γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich ox...γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich oxygen vacancies on the surface of γ-MnO2 are verified by morphology, structure,electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy(XPS) results. The oxygen reduction reaction(ORR) electrocatalytic activity of γ-MnO2 is significantly improved by the incoming oxygen vacancies. The γ-MnO2 nanorod-assembled hierarchical micro-spheres calcined under 300 °C in Ar atmosphere show the best ORR performance. The primary Al-air batteries using γ-MnO2 catalysts as the cathode, which demonstrates excellent peal power density of 318 m W cm^(-2) when applying theγ-MnO2 catalysts with optimal amount of oxygen vacancies.展开更多
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel...A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.展开更多
基金support from the Shenzhen Science and Technology Program(No.KQTD20190929173914967,ZDSYS20220527171401003,and JCYJ20200109110416441).
文摘Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.
基金supported by the National Natural Science Foundation of China(22109100,22075203)Guangdong Basic and Applied Basic Research Foundation(2022A1515011677)+1 种基金Shenzhen Science and Technology Project Program(JCYJ2021032409420401)Natural Science Foundation of SZU(000002111605).
文摘The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.
基金supported by the National Natural Science Foundation of China (21975163, 51902204)。
文摘γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich oxygen vacancies on the surface of γ-MnO2 are verified by morphology, structure,electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy(XPS) results. The oxygen reduction reaction(ORR) electrocatalytic activity of γ-MnO2 is significantly improved by the incoming oxygen vacancies. The γ-MnO2 nanorod-assembled hierarchical micro-spheres calcined under 300 °C in Ar atmosphere show the best ORR performance. The primary Al-air batteries using γ-MnO2 catalysts as the cathode, which demonstrates excellent peal power density of 318 m W cm^(-2) when applying theγ-MnO2 catalysts with optimal amount of oxygen vacancies.
基金National Natural Science Foundation of China,Grant/Award Numbers:22075203,22279079,21905179Guangdong Science and Technology Department Program,Grant/Award Number:2021QN02L252+1 种基金Shenzhen Science and Technology Department Program,Grant/Award Numbers:20220810133521001,20220809165014001Natural Science Foundation of SZU,Grant/Award Numbers:000002111605,000002112215。
文摘A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.