Background:Osteochondral lesions of the talus(OLTs)are a significant challenge for foot and ankle specialists,which could cause pain and decrease patient function.Researchers can use the findings of this study to shap...Background:Osteochondral lesions of the talus(OLTs)are a significant challenge for foot and ankle specialists,which could cause pain and decrease patient function.Researchers can use the findings of this study to shape future directions for research by exploring global trends and hotspots in OLT.Methods:Web of Science Core Collection was used to retrieve literature related to OLT between 2004 and 2021.This report covers the current state of OLTs,such as publications,journals,trends,hotspots,and the performances of relevant countries,institutions and authors.The co-citation analysis,the coauthorship analysis,the cooccurrence analysis,and the bibliographic coupling analysis were conducted with the Bibliometrix R package,VOSviewer v1.6.10.0,and CiteSpace 5.8.R3.Results:During an 18-year review,717 articles and 76 review articles on OLT published from 2004 to 2021 were reviewed.The USA has made the largest contribution to the OLT-related literature,and a significant contribution has been made by Kennedy JG(48/6.05%)and van Dijk CN(30/3.78%).In terms of total link strength,Foot&Ankle International was the leading journal.Analysis showed that the global research hotspots of OLTs focused on the pathogenesis,diagnosis,clinical research,and surgical treatment of OLT.It would be significant to pay close attention to future research on osteochondral autograft transplantation and management,surgery,multidisciplinary integration and mechanisms of OLT,and its related diseases.Conclusions:The study provides information about the current status and hotspots of research in the domain of OLT over the past 18 years that will assist researchers in identifying potential perspectives on hot topics and research frontiers.展开更多
We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenc...We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenched and tempered steel(919 MPa yield strength,17.11%elongation)are greater than those of hot-rolled steel(690 MPa yield strength,16.81%elongation)due to the strengthening effect of insitu Ti_(3)O_(5)–Nb(C,N)nanoparticles.In addition,the HE susceptibility is substantially mitigated to 55.52%,approximately 30%lower than that of steels without in-situ nanoparticles(84.04%),which we attribute to the heterogeneous nucleation of the Ti_(3)O_5 nanoparticles increasing the density of the carbides.Compared with hard TiN inclusions,the spherical and soft Al_(2)O_(3)–MnS core–shell inclusions that nucleate on in-situ Al_(2)O_(3) particles could also suppress HE.In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels.展开更多
The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely rela...The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.展开更多
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne...Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.展开更多
Two types of ultralow carbon steel weld metals(with and without added Cu-Nb) were prepared using gas metal arc welding(GMAW) to investigate the correlation between the microstructure and mechanical properties of weld ...Two types of ultralow carbon steel weld metals(with and without added Cu-Nb) were prepared using gas metal arc welding(GMAW) to investigate the correlation between the microstructure and mechanical properties of weld metals.The results of microstructure characterization showed that the weld metal without Cu-Nb was mainly composed of acicular ferrite(AF), lath bainite(LB), and granular bainite(GB).In contrast, adding Cu-Nb to the weld metal caused an evident transformation of martensite and grain coarsening.Both weld metals had a high tensile strength(more than 950 MPa) and more than 17% elongation;however, their values of toughness deviated greatly,with a difference of approximately 40 J at-50℃.Analysis of the morphologies of the fracture surfaces and secondary cracks further revealed the correlation between the microstructure and mechanical properties.The effects of adding Cu and Nb on the microstructure and mechanical properties of the weld metal are discussed;the indication is that adding Cu-Nb increases the hardenability and grain size of the weld metal and thus deteriorates the toughness.展开更多
Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some pr...Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.展开更多
A dynamical system of particle growth in the con vective undercooled melt driven by a biaxial straining flow is modeled. A uniformly valid asymptotic solution for the in terface evolution in particle growth is obtaine...A dynamical system of particle growth in the con vective undercooled melt driven by a biaxial straining flow is modeled. A uniformly valid asymptotic solution for the in terface evolution in particle growth is obtained by means of the multiple variable expansion method. The analytical so lution as a function of both azimuth angle and polar angle shows that the interface shape of particle growth in the bi axial straining flow is significantly deformed by the biaxial straining flow. The biaxial straining flow results in higher lo cal growth rate near the surface where the flow comes in and leads to lower local growth rate near the surface where the flow goes out. Due to the difference in local growth rate, an initially spherical particle will evolve into a prolate barrel like shape in the biaxial straining flow.展开更多
Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- peratur...Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- perature was developed, which provides a method to es- timate the carbonitride complete dissolution temperature for different steel compositions. Actual carbonitride pre- cipitation behavior was further verified in Ti-V-C-N microalloyed steel system. The model suggests that for higher IV] and [Ti] dissolved in steels, it is available to decrease the addition of C and N during alloy composi- tion design. The resultant longer fatigue life of the modified steel could be attributed to the more [V] and [Ti] dissolved in the matrix, inducing finer dispersion of carbonitrides. Therefore, this model is proved to be effective in determining better chemical composition for high-performance steels, leading to possible reductions in the cost of production and improvements in the combined mechanical properties of the steels.展开更多
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the allo...A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.展开更多
文摘Background:Osteochondral lesions of the talus(OLTs)are a significant challenge for foot and ankle specialists,which could cause pain and decrease patient function.Researchers can use the findings of this study to shape future directions for research by exploring global trends and hotspots in OLT.Methods:Web of Science Core Collection was used to retrieve literature related to OLT between 2004 and 2021.This report covers the current state of OLTs,such as publications,journals,trends,hotspots,and the performances of relevant countries,institutions and authors.The co-citation analysis,the coauthorship analysis,the cooccurrence analysis,and the bibliographic coupling analysis were conducted with the Bibliometrix R package,VOSviewer v1.6.10.0,and CiteSpace 5.8.R3.Results:During an 18-year review,717 articles and 76 review articles on OLT published from 2004 to 2021 were reviewed.The USA has made the largest contribution to the OLT-related literature,and a significant contribution has been made by Kennedy JG(48/6.05%)and van Dijk CN(30/3.78%).In terms of total link strength,Foot&Ankle International was the leading journal.Analysis showed that the global research hotspots of OLTs focused on the pathogenesis,diagnosis,clinical research,and surgical treatment of OLT.It would be significant to pay close attention to future research on osteochondral autograft transplantation and management,surgery,multidisciplinary integration and mechanisms of OLT,and its related diseases.Conclusions:The study provides information about the current status and hotspots of research in the domain of OLT over the past 18 years that will assist researchers in identifying potential perspectives on hot topics and research frontiers.
基金the financial support received from the National Natural Science Foundation of China(Nos.U1706221,51922002,and 51771025)the Fundamental Research Funds for the Central Universities(No.FRF-TP17-19-003C1Z)the special sponsor for the Research Student Attachment Program from the graduate school of the University of Science and Technology Beijing。
文摘We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenched and tempered steel(919 MPa yield strength,17.11%elongation)are greater than those of hot-rolled steel(690 MPa yield strength,16.81%elongation)due to the strengthening effect of insitu Ti_(3)O_(5)–Nb(C,N)nanoparticles.In addition,the HE susceptibility is substantially mitigated to 55.52%,approximately 30%lower than that of steels without in-situ nanoparticles(84.04%),which we attribute to the heterogeneous nucleation of the Ti_(3)O_5 nanoparticles increasing the density of the carbides.Compared with hard TiN inclusions,the spherical and soft Al_(2)O_(3)–MnS core–shell inclusions that nucleate on in-situ Al_(2)O_(3) particles could also suppress HE.In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels.
文摘The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.
基金support of the National Natural Science Foundation of China(Grant number 52071088)。
文摘Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRF-AT-19-002)the Domain Foundation of Equipment Advance Research of the 13th Five-year Plan (No.61409220121)the National Natural Science Foundation of China (No.51971031)。
文摘Two types of ultralow carbon steel weld metals(with and without added Cu-Nb) were prepared using gas metal arc welding(GMAW) to investigate the correlation between the microstructure and mechanical properties of weld metals.The results of microstructure characterization showed that the weld metal without Cu-Nb was mainly composed of acicular ferrite(AF), lath bainite(LB), and granular bainite(GB).In contrast, adding Cu-Nb to the weld metal caused an evident transformation of martensite and grain coarsening.Both weld metals had a high tensile strength(more than 950 MPa) and more than 17% elongation;however, their values of toughness deviated greatly,with a difference of approximately 40 J at-50℃.Analysis of the morphologies of the fracture surfaces and secondary cracks further revealed the correlation between the microstructure and mechanical properties.The effects of adding Cu and Nb on the microstructure and mechanical properties of the weld metal are discussed;the indication is that adding Cu-Nb increases the hardenability and grain size of the weld metal and thus deteriorates the toughness.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20100006120020)
文摘Copper-coated aluminum wires exhibit good electrical conductivity, high thermal conductivity, low contact resistance of copper and low density, and provide economic advantages over aluminum. However, there are some problems in the manufacring processes of hot-dip copper-coated aluminum wires, such as the difficulties in controlling coating process. In this work, the hot-dip copper-coating method of aluminum wires was investigated for producing copper-coated aluminum wire composites. The interface microstructure between the aluminum wire and the copper coating layer was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spec- trometry (EDS). Five different fluxing agents were tested. Experimental results show that appropriate conditions for the hot-dip process are determined as the liquid copper temperature of 1085℃ and the treatment time less than 1 s. A success in hot-dip copper-coated aluminum wires is achieved by hot-dipping a low-melting-point metal into a high-melting-point metal liquid, which is significant for the further devel- opment and application of copper-coated aluminum wire composites.
基金supported by Overseas Distinguished Scholar Program by the Ministry of Chinese Education(MS2010BJKJ005)the National Natural Science Foundation of China(10972030)
文摘A dynamical system of particle growth in the con vective undercooled melt driven by a biaxial straining flow is modeled. A uniformly valid asymptotic solution for the in terface evolution in particle growth is obtained by means of the multiple variable expansion method. The analytical so lution as a function of both azimuth angle and polar angle shows that the interface shape of particle growth in the bi axial straining flow is significantly deformed by the biaxial straining flow. The biaxial straining flow results in higher lo cal growth rate near the surface where the flow comes in and leads to lower local growth rate near the surface where the flow goes out. Due to the difference in local growth rate, an initially spherical particle will evolve into a prolate barrel like shape in the biaxial straining flow.
基金financially supported by the Science and Technology Support Project of Jiangxi Province(No. 20112BBE50006)Young Scientists of Jiangxi Province Training Objects(No.20133BCB23032)
文摘Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- perature was developed, which provides a method to es- timate the carbonitride complete dissolution temperature for different steel compositions. Actual carbonitride pre- cipitation behavior was further verified in Ti-V-C-N microalloyed steel system. The model suggests that for higher IV] and [Ti] dissolved in steels, it is available to decrease the addition of C and N during alloy composi- tion design. The resultant longer fatigue life of the modified steel could be attributed to the more [V] and [Ti] dissolved in the matrix, inducing finer dispersion of carbonitrides. Therefore, this model is proved to be effective in determining better chemical composition for high-performance steels, leading to possible reductions in the cost of production and improvements in the combined mechanical properties of the steels.
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.
文摘A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy.