This letter describes semiconducting polymer dots (Pdots) doped with a photosensitizer and modified with a cell penetrating peptide for photodynamic therapy (PDT). The resulting Pdots exhibited efficient singlet o...This letter describes semiconducting polymer dots (Pdots) doped with a photosensitizer and modified with a cell penetrating peptide for photodynamic therapy (PDT). The resulting Pdots exhibited efficient singlet oxygen (^1O2) generation mediated by intraparticle energy transfer. Experimental results indicated that the peptide-coated Pdots could promote the cellular uptake and increase the penetration efficiency in vitro, and effectively suppressed tumor growth and enhanced the photodynamic effect in vivo. Our results demonstrate that Pdots with photosensitizer loading and peptide modification hold great promise for cancer therapy.展开更多
基金financial support from the National Science Foundation of China (No. 81641177)
文摘This letter describes semiconducting polymer dots (Pdots) doped with a photosensitizer and modified with a cell penetrating peptide for photodynamic therapy (PDT). The resulting Pdots exhibited efficient singlet oxygen (^1O2) generation mediated by intraparticle energy transfer. Experimental results indicated that the peptide-coated Pdots could promote the cellular uptake and increase the penetration efficiency in vitro, and effectively suppressed tumor growth and enhanced the photodynamic effect in vivo. Our results demonstrate that Pdots with photosensitizer loading and peptide modification hold great promise for cancer therapy.