The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate p...The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.展开更多
The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical ...The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction(OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high p H was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.展开更多
The corrosion behaviour of 316L and Alloy 625 was investigated using cyclic polarization,electrochemical impedance spectroscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy and induced coupled plasma-o...The corrosion behaviour of 316L and Alloy 625 was investigated using cyclic polarization,electrochemical impedance spectroscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy and induced coupled plasma-optical emis sion spectrometer.The results indicated that Alloy 625 showed better corrosion resistance than 316L and the prolonging immersion time could enhance corrosion resistance of the two alloys.The passive film formed on the surface of 316L exhibited an electronic structure of p-p heterojunction,with Fe3O4 and Cr2O3 enriched in the outer and inner layers,respectively.However,Alloy 625 presented the electronic structure of n-p heterojunction dominated by the outer Fe2O3/NiFe2O4 and inner Cr2O3.This resulted in the opposite semiconductive properties of the passive films formed on the two materials.In the acid solutions,Fe and Mo suffered from selective dissolution while Cr and Ni were relatively stable.The corrosion rates were mainly dominated by the dissolution of iron.Alloy 625 presented better corrosion resistance than 316L due to the obviously lower content of Fe and the higher content of Cr and Ni in the passive film.The continuously selective dissolution of iron resulted in the increase in Cr/Fe ratio in the passive film,which was responsible for the enhancement in corrosion resistance.展开更多
文摘The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.
基金supported by the technology projects of State Grid Corporation (No. 52110417000N)the National Science and Technology Major Project (No. 2016ZX05028004)
文摘The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction(OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high p H was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRFIC-18-007)the China Postdoctoral Science Foundation(No. 2019M650487).
文摘The corrosion behaviour of 316L and Alloy 625 was investigated using cyclic polarization,electrochemical impedance spectroscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy and induced coupled plasma-optical emis sion spectrometer.The results indicated that Alloy 625 showed better corrosion resistance than 316L and the prolonging immersion time could enhance corrosion resistance of the two alloys.The passive film formed on the surface of 316L exhibited an electronic structure of p-p heterojunction,with Fe3O4 and Cr2O3 enriched in the outer and inner layers,respectively.However,Alloy 625 presented the electronic structure of n-p heterojunction dominated by the outer Fe2O3/NiFe2O4 and inner Cr2O3.This resulted in the opposite semiconductive properties of the passive films formed on the two materials.In the acid solutions,Fe and Mo suffered from selective dissolution while Cr and Ni were relatively stable.The corrosion rates were mainly dominated by the dissolution of iron.Alloy 625 presented better corrosion resistance than 316L due to the obviously lower content of Fe and the higher content of Cr and Ni in the passive film.The continuously selective dissolution of iron resulted in the increase in Cr/Fe ratio in the passive film,which was responsible for the enhancement in corrosion resistance.