期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Towards extreme fast charging of 4.6 V LiCoO_(2) via mitigating high-voltage kinetic hindrance 被引量:2
1
作者 Yu Tang Jun Zhao +13 位作者 He Zhu Jincan Ren Wei Wang Yongjin Fang Zhiyong Huang zijia yin Yalan Huang Binghao Zhang Tingting Yang Tianyi Li Leighanne CGallington Si Lan Yang Ren Qi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期13-20,I0001,共9页
High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its ra... High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials. 展开更多
关键词 Li-ion battery High-voltage LiCoO_(2) Li-ion diffusion Structural evolution Fast charging
下载PDF
Phytic acid-derived fabrication of ultra-small MoP nanoparticles for efficient CO methanation: Effects of P/Mo ratios
2
作者 Jun Zhao zijia yin +3 位作者 Baowei Wang Zhenhua Li Yan Xu Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期248-255,I0009,共9页
Molybdenum phosphide(MoP) catalyst has been widely applied in hydrogenation reactions, while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area(SBET) is still challengin... Molybdenum phosphide(MoP) catalyst has been widely applied in hydrogenation reactions, while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area(SBET) is still challenging. Herein, we have provided a facile method for preparing a series of MoP-x(x=P/Mo ratios ranging from 1 to 5) catalysts by pyrolyzing phytic acid(PA)-derived Mo complexes in a H2 atmosphere. The physicochemical properties and the catalytic activity of MoP catalysts were investigated. The results showed that the obtained MoP-5 catalyst had the largest SBETand exhibited ultra-small nanoparticle diameter of 3.6 nm, which ascribed to the chelation of PA and the confinement of deposited products.As the content of PA increased, the synthetic mechanism of MoP was also affected, which led to the difference in the valence of surface Mo species. The characterization results further confirmed that Moδ+ sites in MoP catalysts are active sites for methanation reaction and its content on the surface of MoP-x catalysts determines the catalytic activity. 展开更多
关键词 Molybdenum phosphide Phytic acid P/Mo ratios Ultra-small nanoparticle CO methanation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部