High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its ra...High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials.展开更多
Molybdenum phosphide(MoP) catalyst has been widely applied in hydrogenation reactions, while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area(SBET) is still challengin...Molybdenum phosphide(MoP) catalyst has been widely applied in hydrogenation reactions, while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area(SBET) is still challenging. Herein, we have provided a facile method for preparing a series of MoP-x(x=P/Mo ratios ranging from 1 to 5) catalysts by pyrolyzing phytic acid(PA)-derived Mo complexes in a H2 atmosphere. The physicochemical properties and the catalytic activity of MoP catalysts were investigated. The results showed that the obtained MoP-5 catalyst had the largest SBETand exhibited ultra-small nanoparticle diameter of 3.6 nm, which ascribed to the chelation of PA and the confinement of deposited products.As the content of PA increased, the synthetic mechanism of MoP was also affected, which led to the difference in the valence of surface Mo species. The characterization results further confirmed that Moδ+ sites in MoP catalysts are active sites for methanation reaction and its content on the surface of MoP-x catalysts determines the catalytic activity.展开更多
基金supported by the National Key R&D Program of China(2020YFA0406203)the Shenzhen Science and Technology Innovation Commission(JCYJ20180507181806316,JCYJ20200109105618137)+1 种基金the ECS Scheme(City U 21307019,City U7020043,City U7005500,City U7005612)the Shenzhen Research Institute,City University of Hong Kong。
文摘High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials.
基金Financial supports from the National High Technology Research and Development Program of China (863 Project) (2015AA050504)。
文摘Molybdenum phosphide(MoP) catalyst has been widely applied in hydrogenation reactions, while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area(SBET) is still challenging. Herein, we have provided a facile method for preparing a series of MoP-x(x=P/Mo ratios ranging from 1 to 5) catalysts by pyrolyzing phytic acid(PA)-derived Mo complexes in a H2 atmosphere. The physicochemical properties and the catalytic activity of MoP catalysts were investigated. The results showed that the obtained MoP-5 catalyst had the largest SBETand exhibited ultra-small nanoparticle diameter of 3.6 nm, which ascribed to the chelation of PA and the confinement of deposited products.As the content of PA increased, the synthetic mechanism of MoP was also affected, which led to the difference in the valence of surface Mo species. The characterization results further confirmed that Moδ+ sites in MoP catalysts are active sites for methanation reaction and its content on the surface of MoP-x catalysts determines the catalytic activity.