The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioa...Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioactive nutrients of sexual spores of edible mushrooms were summarized,the SD mechanism was described,and the relationship between postharvest SD and the quality of edible mushrooms was analyzed.Spores contain various bioactive nutrients that are benefi cial to the human body.Mature mushrooms can actively discharge spores in a process affected by light,relative humidity,and temperature.During storage,the physiological metabolism of spore-bearing gill tissue is vigorous,promoting the release of postharvest spores and changing the nutritional value of fruiting bodies.The flavor of the fruiting bodies also varied signifi cantly during SD.Edible mushroom sexual spores have the potential to become new raw materials for functional food and medical resources.Research on the effect of the mechanism of SD on the quality of edible mushrooms and the development of SD regulation technology may be a new trend in the quality control of edible mushrooms,which will promote the development of the edible mushroom industry.展开更多
This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aer...This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.展开更多
It is important to select suitable organisms to adapt the requirement of different environment monitoring purposes.Following our previous study,the behavioral responses of Daphnia magna and Japanese madaka (Oryzias l...It is important to select suitable organisms to adapt the requirement of different environment monitoring purposes.Following our previous study,the behavioral responses of Daphnia magna and Japanese madaka (Oryzias latipes) were investigated and compared under flow-through conditions in an on-line biomonitoring system.The results showed that both D.magna and Japanese madaka had similar biological clock,but the circadian rhythms of Japanese madaka was more clearly recorded than that of D.magna.And the sensitivity of D.magna was about two orders of magnitudes higher than that of Japanese madaka in different types of toxic chemicals (dichlorovos,deltamethrin and cadmium chloride).However,when both animals were used in an on-line biomonitoring system,the life span of D.magna was less than 7 days and Japanese madaka could last for more than one month without feeding.Therefore,D.magna was proposed to be a more sensitive bioindicator and was suitable for short term monitoring the pollution events at concentration level closing to the water quality standard,while Japanese madaka was more suitable for the long-term monitoring for accidental discharges.展开更多
Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting act...Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting activities. In this paper, based on a mathematical model proposed by Butera, we show how the mixed bursting activities depend on the potassium current in the coupled pre-Botzinger complex. Using fast-slow decomposition and bifurcation analysis, we investigate the dynamics of mixed bursting, as well as the mechanisms of transition between different mixed bursting patterns. We find that mixed bursting involves different bistability, and it is the transition state of two types of regular burstings.展开更多
Deoxygenative upgrading of 5-hydromethylfurfural(HMF)into valuable chemicals has attracted intensive research interest in recent years,with product selectivity control remaining an important topic.Herein,TiO_(2) suppo...Deoxygenative upgrading of 5-hydromethylfurfural(HMF)into valuable chemicals has attracted intensive research interest in recent years,with product selectivity control remaining an important topic.Herein,TiO_(2) supported gold catalysts coated with a thin N-doped porous carbon(NPC)layer were developed via a polydopamine-coating-carbonization strategy and utilized for pathway-specific conversion of HMF into 5-methylfurfural(5-MF)with the use of renewable formic acid(FA)as the deoxygenation reagent.The as-fabricated Au/TiO_(2)@NPC exhibited excellent catalytic performance with a high yield of 5-MF(>95%).The catalytic behavior of Au@NPC-based catalysts was shown to be correlated with the suitable combination of highly dispersed Au nanoparticles and favorable interfacial interactions in the Au@NPC core-shell hetero-nanoarchitectures,thereby facilitating the preferential esterification of HMF with FA and suppressing unproductive FA dehydrogenation,which promoted the selective formylation/decarboxylation of hydroxy-methyl group in HMF in a pathway-specific manner.The present NPC/metal interfacial engineering strategy may provide a potential guide for the rational design of advanced catalysts for a wide variety of heterogeneous catalysis processes in terms of the conversion of biomass source.展开更多
Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery perf...Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery performance,however,their effect on the formation mechanism of the oxygen reduction product(NaO_(2))is still unclear.Here,we have investigated the formation mechanism of NaO_(2) during the discharge process in the presence of a redox mediator with the help of atomic/nano-scale in-situ characterization tools used in concert(e.g.atomic force microscope,electrochemical quartz crystal microbalance(EQCM)and laser nano-particle analyzer).As a result,real-time observations on different time scales show that by shuttling electrons to the electrolyte,the redox mediator enables formation of NaO_(2) in the solution-phase instead of within a finite region near the electrode surface.These findings provide new fundamental insights on the understanding of Na-O_(2) batteries and new consequently perspectives on designing high performance metal-O_(2) batteries and other related functions.展开更多
General situation of the seawater intrusion in Kiaochow Bay region was analyzed. Current status of the seawater intrusion and its formation mechanism, influence factor and hazard in Kiaochow Bay region were summarized...General situation of the seawater intrusion in Kiaochow Bay region was analyzed. Current status of the seawater intrusion and its formation mechanism, influence factor and hazard in Kiaochow Bay region were summarized. Finally, against seawater intrusion situation in the region, a series of practical prevention and control countermeasures were proposed.展开更多
Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in th...Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in the northern Tibetan Plateau. We present Late Cretaceous dextral movement affected by Okhotomorsk Block-East Asia collision and a larger sinistral offset since Late Eocene along the ATF based on the provenance analysis of western Jiuxi Basin. Moreover, currently available estimates of offset based on displaced Paleozoic and Jurassic rocks could not represent the maximum offset due to late Cretaceous dextral offset.展开更多
Flexible hafnia-based ferroelectric memories are arousing much interest with the ever-growing demands for nonvolatile data storage in wearable electronic devices.Here,high-quality flexible Hf_(0.5)Zr_(0.5)O_(2)membran...Flexible hafnia-based ferroelectric memories are arousing much interest with the ever-growing demands for nonvolatile data storage in wearable electronic devices.Here,high-quality flexible Hf_(0.5)Zr_(0.5)O_(2)membranes with robust ferroelectricity were fabricated on inorganic pliable mica substrates via an atomic layer deposition technique.The flexible Hf_(0.5)Zr_(0.5)O_(2) thin membranes with a thickness of∼8 nm exhibit a high remanent polarization of∼16μC/cm^(2),which possess very robust polarization switching endurance(>10^(10) cycles,two orders of magnitude better than reported flexible HfO_(2)-based films)and superior retention ability(expected>10 years).In particular,stable ferroelectric polarization as well as excellent endurance and retention performance show negligible degradations under 6 mm radius bending conditions or after 10^(4) bending cycles with a 6 mm bending radius.These results mark a crucial step in the development of flexible hafnium oxide-based ferroelectric memories for wearable electronic devices.展开更多
Identifying and segmenting spacecraft components is vital in many on-orbit space missions,such as on-orbit maintenance and component recovery.Integrating depth maps with visual images has been proven effective in impr...Identifying and segmenting spacecraft components is vital in many on-orbit space missions,such as on-orbit maintenance and component recovery.Integrating depth maps with visual images has been proven effective in improving segmentation accuracy.However,existing methods ignore the noise and fallacy in collected depth maps,which interfere with the network to extract representative features,decreasing the final segmentation accuracy.To this end,this paper proposes a Filtering and Regret Network(FRNet)for spacecraft component segmentation.The FRNet incorporates filtering and regret mechanisms to suppress the abnormal depth response in shallow layers and selectively reuses the filtered cues in deep layers,avoiding the detrimental effects of low-quality depth information while preserving the semantic context inherent in depth maps.Furthermore,a two-stage feature fusion module is proposed,which involves information interaction and aggregation.This module effectively explores the feature correlation and unifies the multimodal features into a comprehensive representation.Finally,a large-scale spacecraft component recognition dataset is constructed for training and evaluating spacecraft component segmentation algorithms.Experimental results demonstrate that the FRNet achieves a state-of-the-art performance with a mean Intersection Over Union(mIOU)of 84.13%and an average inference time of 133.2 ms when tested on an NVIDIA RTX 2080 SUPER GPU.展开更多
Zeolite-based catalyst hydrocracking of plastics is a potential strategy for mitigating the environmental impacts of plastic wastes and recycling valuable resources,but difficult mass transfer,low concentration of aci...Zeolite-based catalyst hydrocracking of plastics is a potential strategy for mitigating the environmental impacts of plastic wastes and recycling valuable resources,but difficult mass transfer,low concentration of acid sites,and high cost are still barriers to their practical applications.In this paper,we report an excellent hydrocracking catalyst of ZSM-5 nanosheets(Ce/b-ZSM-5)modified by Ce species with high conversion up to 96.3%,C_(3)−C_(5)selectivity up to 80.9%,and good stability during the hydrogenation of low-density polyethylene.Through comprehensive studies,b-ZSM-5 shows higher molecular diffusion efficiency and acid site concentrations compared with normal ZSM-5(n-ZSM-5)and hollow ZSM-5(h-ZSM-5).The introduction of Ce species into b-ZSM-5 further increases the density of Brønsted(B)and Lewis(L)acid sites as active sites,which enhances the adsorption of substrates and facilitates the formation of intermediates and desorption of products.As a result,the hydrocracking activity of Ce/b-ZSM-5 is significantly improved.展开更多
Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structu...Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structure of WDs frequently result in interventional treatment failure. Herein, we create a series of quaternized chitosan (QCS)-incorporated composite hydrogels (referred to as GHCH-n) by UV cross-linking and then convert them into microneedle patches (MNPs). QCS, which is positively charged and amphiphilic, is essential for broad-spectrum antibacterial and haemostatic activities. QCS is proven to be slightly toxic, so it is immobilized into the methacrylate gelatine (GelMA) molecular cage to minimize adverse effects. A polydimethylsiloxane micro-mould is used to shape the MNPs. MNPs can pierce tissue, seal off bleeding sites, and cling to wounds securely. Thus, MNPs can cooperate with GHCH-n hydrogels to halt bleeding and accelerate wound healing. This study recommends GHCH-10 MNPs as an advanced biomaterial. Several preclinical research models have thoroughly validated the application effect of GHCH-10 MNPs. This research also proposes a novel strategy for integrating the nature of bioactive polymers and the structure of composite biomaterials. This strategy is not only applicable to the fabrication of next-generation WDs but also shows great potential in expanding interdisciplinary domains.展开更多
Emerging ferroelectric and antiferroelectric HfO_(2)-based thin films are attractive candidates for energy conversion and storage applications. In this work, the polar phase transformation between tetragonal and ortho...Emerging ferroelectric and antiferroelectric HfO_(2)-based thin films are attractive candidates for energy conversion and storage applications. In this work, the polar phase transformation between tetragonal and orthorhombic phases associated with ferroelectric or antiferroelectric behaviors is utilized to manipulate the electrocaloric cooling and energy storage performances in Zr-doped, woken up HfO_(2) ultrathin films. A giant electrocaloric temperature change of up to 11.85 K in Hf_(0.5)Zr_(0.5)O_(2) with the morphotropic phase boundary (MPB) state and a high energy storage density of 39.34 J/cm^(3) in the tetragonal phase-dominant Hf0.25Zr0.75O2 system are obtained. More interestingly, contrary to overdoping and excessive electric fields, an appropriate Zr concentration of 0.5 and an applicable driving field of 1.91 MV/cm are desired for the electrocaloric effect, resulting in an ultralow operating voltage as low as 1.3 V in this 6.8 nm thick Hf_(0.5)Zr_(0.5)O_(2) film. These findings illustrate that the structural design strategy is a visible method for achieving optimal energy-related behaviors and highlight the great possibilities for building future energy-related devices.展开更多
This paper"Detecting gravitational wave with an interferometric seismometer array on lunar nearside"[1]was published in SCIENCE CHINA Physics,Mechanics&Astronomy(66,109513(2023),doi:10.1007/s11433-023-21...This paper"Detecting gravitational wave with an interferometric seismometer array on lunar nearside"[1]was published in SCIENCE CHINA Physics,Mechanics&Astronomy(66,109513(2023),doi:10.1007/s11433-023-2179-9).Due to an oversight on our part,some errors were made in the originally published paper.We apologize for these errors and offer the corresponding explanations and corrections for the readers.展开更多
Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the li...Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.展开更多
One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompat...One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompatible and biodegradable,and they can provide specific physical,chemical,and biological cues to accelerate wound healing.Based on this fact,a series of multifunctional ENMs for complex clinical applications,particularly infected skin injuries,have been developed.Anti-biotics,antimicrobial peptides(AMPs),metals and metal oxides(MMOs),and antibacterial polymers have previously been incorporated into ENMs through advanced material processing techniques,endowing ENMs with enhanced and excellent antibacterial activity.This review summarizes wound healing issues and provides recent advances in antibacterial ENMs created by cutting-edge technology.The future of clinical and translational research on ENMs is also discussed.展开更多
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金supported by Liaoning Provincial Department of Educational Annual(2019)Scientific Research Fund Project(LSNZD201903)Shenyang Bureau of Science and Technology Annual(2021)Scientific Research Fund Project(21110319)Shenyang Agricultural University,high-end talent introduction fund project(SYAU20160003).
文摘Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioactive nutrients of sexual spores of edible mushrooms were summarized,the SD mechanism was described,and the relationship between postharvest SD and the quality of edible mushrooms was analyzed.Spores contain various bioactive nutrients that are benefi cial to the human body.Mature mushrooms can actively discharge spores in a process affected by light,relative humidity,and temperature.During storage,the physiological metabolism of spore-bearing gill tissue is vigorous,promoting the release of postharvest spores and changing the nutritional value of fruiting bodies.The flavor of the fruiting bodies also varied signifi cantly during SD.Edible mushroom sexual spores have the potential to become new raw materials for functional food and medical resources.Research on the effect of the mechanism of SD on the quality of edible mushrooms and the development of SD regulation technology may be a new trend in the quality control of edible mushrooms,which will promote the development of the edible mushroom industry.
基金supported by the National Natural Science Foundation of China (No.20677021)the Science Foundation of Jishou University (No.jsdxkyzz200101)
文摘This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.
基金supported by the National Key Program for Water Pollution Control (No. 2009ZX07210-009,2009ZX07209-005,2009ZX07527-002)the State Key Laboratory of Environmental Aquatic Chemistry (No.08K07ESPCR)
文摘It is important to select suitable organisms to adapt the requirement of different environment monitoring purposes.Following our previous study,the behavioral responses of Daphnia magna and Japanese madaka (Oryzias latipes) were investigated and compared under flow-through conditions in an on-line biomonitoring system.The results showed that both D.magna and Japanese madaka had similar biological clock,but the circadian rhythms of Japanese madaka was more clearly recorded than that of D.magna.And the sensitivity of D.magna was about two orders of magnitudes higher than that of Japanese madaka in different types of toxic chemicals (dichlorovos,deltamethrin and cadmium chloride).However,when both animals were used in an on-line biomonitoring system,the life span of D.magna was less than 7 days and Japanese madaka could last for more than one month without feeding.Therefore,D.magna was proposed to be a more sensitive bioindicator and was suitable for short term monitoring the pollution events at concentration level closing to the water quality standard,while Japanese madaka was more suitable for the long-term monitoring for accidental discharges.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472009)Construction Plan for Innovative Research Team of North China University of Technology(Grant No.XN018010)Scientific Research for Undergraduate of North China University of Technology
文摘Neurons in the pre-B6tzinger complex within the mammalian brain stem play important roles in the generation of respiratory rhythms. Experimental observations show that some neurons can exhibit novel mixed bursting activities. In this paper, based on a mathematical model proposed by Butera, we show how the mixed bursting activities depend on the potassium current in the coupled pre-Botzinger complex. Using fast-slow decomposition and bifurcation analysis, we investigate the dynamics of mixed bursting, as well as the mechanisms of transition between different mixed bursting patterns. We find that mixed bursting involves different bistability, and it is the transition state of two types of regular burstings.
文摘Deoxygenative upgrading of 5-hydromethylfurfural(HMF)into valuable chemicals has attracted intensive research interest in recent years,with product selectivity control remaining an important topic.Herein,TiO_(2) supported gold catalysts coated with a thin N-doped porous carbon(NPC)layer were developed via a polydopamine-coating-carbonization strategy and utilized for pathway-specific conversion of HMF into 5-methylfurfural(5-MF)with the use of renewable formic acid(FA)as the deoxygenation reagent.The as-fabricated Au/TiO_(2)@NPC exhibited excellent catalytic performance with a high yield of 5-MF(>95%).The catalytic behavior of Au@NPC-based catalysts was shown to be correlated with the suitable combination of highly dispersed Au nanoparticles and favorable interfacial interactions in the Au@NPC core-shell hetero-nanoarchitectures,thereby facilitating the preferential esterification of HMF with FA and suppressing unproductive FA dehydrogenation,which promoted the selective formylation/decarboxylation of hydroxy-methyl group in HMF in a pathway-specific manner.The present NPC/metal interfacial engineering strategy may provide a potential guide for the rational design of advanced catalysts for a wide variety of heterogeneous catalysis processes in terms of the conversion of biomass source.
基金financially supported by Soft Science Research Project of Guangdong Province(No.2017B030301013)the Shenzhen Science and Technology Research(Grant No.JCYJ20170818085823773,ZDSYS201707281026184)+1 种基金China Postdoctoral Science Foundation(2019M660317)the National Science Foundation of China(No.U1864213)。
文摘Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery performance,however,their effect on the formation mechanism of the oxygen reduction product(NaO_(2))is still unclear.Here,we have investigated the formation mechanism of NaO_(2) during the discharge process in the presence of a redox mediator with the help of atomic/nano-scale in-situ characterization tools used in concert(e.g.atomic force microscope,electrochemical quartz crystal microbalance(EQCM)and laser nano-particle analyzer).As a result,real-time observations on different time scales show that by shuttling electrons to the electrolyte,the redox mediator enables formation of NaO_(2) in the solution-phase instead of within a finite region near the electrode surface.These findings provide new fundamental insights on the understanding of Na-O_(2) batteries and new consequently perspectives on designing high performance metal-O_(2) batteries and other related functions.
基金Supported by Natural Science Fund in Shandong Province,China(ZR2011DM001)Science & Technology Support Plan Item in Qingdao City,China (11-2-3-64-nsh)
文摘General situation of the seawater intrusion in Kiaochow Bay region was analyzed. Current status of the seawater intrusion and its formation mechanism, influence factor and hazard in Kiaochow Bay region were summarized. Finally, against seawater intrusion situation in the region, a series of practical prevention and control countermeasures were proposed.
文摘Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in the northern Tibetan Plateau. We present Late Cretaceous dextral movement affected by Okhotomorsk Block-East Asia collision and a larger sinistral offset since Late Eocene along the ATF based on the provenance analysis of western Jiuxi Basin. Moreover, currently available estimates of offset based on displaced Paleozoic and Jurassic rocks could not represent the maximum offset due to late Cretaceous dextral offset.
基金supported by the National Key Research and Development Program of China(2022YFB3807604 and 2019YFA0307900)the National Natural Science Foundation of China(U21A2066,52250281,52125204 and 92163210)the Fundamental Research Funds for the Central Universities(WK2030000035),and this work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Flexible hafnia-based ferroelectric memories are arousing much interest with the ever-growing demands for nonvolatile data storage in wearable electronic devices.Here,high-quality flexible Hf_(0.5)Zr_(0.5)O_(2)membranes with robust ferroelectricity were fabricated on inorganic pliable mica substrates via an atomic layer deposition technique.The flexible Hf_(0.5)Zr_(0.5)O_(2) thin membranes with a thickness of∼8 nm exhibit a high remanent polarization of∼16μC/cm^(2),which possess very robust polarization switching endurance(>10^(10) cycles,two orders of magnitude better than reported flexible HfO_(2)-based films)and superior retention ability(expected>10 years).In particular,stable ferroelectric polarization as well as excellent endurance and retention performance show negligible degradations under 6 mm radius bending conditions or after 10^(4) bending cycles with a 6 mm bending radius.These results mark a crucial step in the development of flexible hafnium oxide-based ferroelectric memories for wearable electronic devices.
文摘Identifying and segmenting spacecraft components is vital in many on-orbit space missions,such as on-orbit maintenance and component recovery.Integrating depth maps with visual images has been proven effective in improving segmentation accuracy.However,existing methods ignore the noise and fallacy in collected depth maps,which interfere with the network to extract representative features,decreasing the final segmentation accuracy.To this end,this paper proposes a Filtering and Regret Network(FRNet)for spacecraft component segmentation.The FRNet incorporates filtering and regret mechanisms to suppress the abnormal depth response in shallow layers and selectively reuses the filtered cues in deep layers,avoiding the detrimental effects of low-quality depth information while preserving the semantic context inherent in depth maps.Furthermore,a two-stage feature fusion module is proposed,which involves information interaction and aggregation.This module effectively explores the feature correlation and unifies the multimodal features into a comprehensive representation.Finally,a large-scale spacecraft component recognition dataset is constructed for training and evaluating spacecraft component segmentation algorithms.Experimental results demonstrate that the FRNet achieves a state-of-the-art performance with a mean Intersection Over Union(mIOU)of 84.13%and an average inference time of 133.2 ms when tested on an NVIDIA RTX 2080 SUPER GPU.
基金the financial aid from the National Science and Technology Major Project of China(No.2020YFE0204500)the National Natural Science Foundation of China(Nos.22020102003,22025506,and 22271274)Program of Science and Technology Development Plan of Jilin Province of China(Nos.20230101035JC and 20230101022JC).
文摘Zeolite-based catalyst hydrocracking of plastics is a potential strategy for mitigating the environmental impacts of plastic wastes and recycling valuable resources,but difficult mass transfer,low concentration of acid sites,and high cost are still barriers to their practical applications.In this paper,we report an excellent hydrocracking catalyst of ZSM-5 nanosheets(Ce/b-ZSM-5)modified by Ce species with high conversion up to 96.3%,C_(3)−C_(5)selectivity up to 80.9%,and good stability during the hydrogenation of low-density polyethylene.Through comprehensive studies,b-ZSM-5 shows higher molecular diffusion efficiency and acid site concentrations compared with normal ZSM-5(n-ZSM-5)and hollow ZSM-5(h-ZSM-5).The introduction of Ce species into b-ZSM-5 further increases the density of Brønsted(B)and Lewis(L)acid sites as active sites,which enhances the adsorption of substrates and facilitates the formation of intermediates and desorption of products.As a result,the hydrocracking activity of Ce/b-ZSM-5 is significantly improved.
基金supported by Fellowship of China National Postdoctoral Program for Innovative Talents(BX20220240)National Natural Science Foundation of China(31800805)+3 种基金Project of Health Commission of Hubei Province(WJ2023M059)Research Program for Advanced Talents of Zhongnan Hospital(ZNYB2022010)Supporting Project of Medical Science and Technology Innovation Platform,Zhongnan Hospital of Wuhan University(CXPT20220222)Fundamental Research Funds for the Central Universities(2042023kf0080).
文摘Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structure of WDs frequently result in interventional treatment failure. Herein, we create a series of quaternized chitosan (QCS)-incorporated composite hydrogels (referred to as GHCH-n) by UV cross-linking and then convert them into microneedle patches (MNPs). QCS, which is positively charged and amphiphilic, is essential for broad-spectrum antibacterial and haemostatic activities. QCS is proven to be slightly toxic, so it is immobilized into the methacrylate gelatine (GelMA) molecular cage to minimize adverse effects. A polydimethylsiloxane micro-mould is used to shape the MNPs. MNPs can pierce tissue, seal off bleeding sites, and cling to wounds securely. Thus, MNPs can cooperate with GHCH-n hydrogels to halt bleeding and accelerate wound healing. This study recommends GHCH-10 MNPs as an advanced biomaterial. Several preclinical research models have thoroughly validated the application effect of GHCH-10 MNPs. This research also proposes a novel strategy for integrating the nature of bioactive polymers and the structure of composite biomaterials. This strategy is not only applicable to the fabrication of next-generation WDs but also shows great potential in expanding interdisciplinary domains.
基金The authors acknowledge the financial support by National Natural Science Foundation of China(Grant Nos.52272109,91963116,and U21A2066)National Key Research and Development Program of China(2022YFB3807604)+1 种基金Natural Science Foundation of Shanghai(Grant No.19ZR1411900)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Emerging ferroelectric and antiferroelectric HfO_(2)-based thin films are attractive candidates for energy conversion and storage applications. In this work, the polar phase transformation between tetragonal and orthorhombic phases associated with ferroelectric or antiferroelectric behaviors is utilized to manipulate the electrocaloric cooling and energy storage performances in Zr-doped, woken up HfO_(2) ultrathin films. A giant electrocaloric temperature change of up to 11.85 K in Hf_(0.5)Zr_(0.5)O_(2) with the morphotropic phase boundary (MPB) state and a high energy storage density of 39.34 J/cm^(3) in the tetragonal phase-dominant Hf0.25Zr0.75O2 system are obtained. More interestingly, contrary to overdoping and excessive electric fields, an appropriate Zr concentration of 0.5 and an applicable driving field of 1.91 MV/cm are desired for the electrocaloric effect, resulting in an ultralow operating voltage as low as 1.3 V in this 6.8 nm thick Hf_(0.5)Zr_(0.5)O_(2) film. These findings illustrate that the structural design strategy is a visible method for achieving optimal energy-related behaviors and highlight the great possibilities for building future energy-related devices.
文摘This paper"Detecting gravitational wave with an interferometric seismometer array on lunar nearside"[1]was published in SCIENCE CHINA Physics,Mechanics&Astronomy(66,109513(2023),doi:10.1007/s11433-023-2179-9).Due to an oversight on our part,some errors were made in the originally published paper.We apologize for these errors and offer the corresponding explanations and corrections for the readers.
基金supported in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102243713in part by the National Natural Science Foundation of China under grant 61973045+2 种基金in part by the Natural Science Basic Research Program of Shaanxi Province under grant 2023-JC-JQ-45in part by the Natural Science Basic Research Program of Shaanxi under grant 2023-JC-QN-0667in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102242102。
文摘Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.
基金supported by Fellowship of China National Postdoctoral Program for Innovative Talents(BX20220240)Improvement Project for Theranostic Ability on Difficulty Miscellaneous Disease(Tumor)from National Health Commission of China(ZLYNXM202006)+1 种基金Chinese Central Special Fund for Local Science and Technology Development of Hubei Province(2018ZYYD023)Science and Technology Department of Hubei Province Key Project(2018ACA159).
文摘One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompatible and biodegradable,and they can provide specific physical,chemical,and biological cues to accelerate wound healing.Based on this fact,a series of multifunctional ENMs for complex clinical applications,particularly infected skin injuries,have been developed.Anti-biotics,antimicrobial peptides(AMPs),metals and metal oxides(MMOs),and antibacterial polymers have previously been incorporated into ENMs through advanced material processing techniques,endowing ENMs with enhanced and excellent antibacterial activity.This review summarizes wound healing issues and provides recent advances in antibacterial ENMs created by cutting-edge technology.The future of clinical and translational research on ENMs is also discussed.