Heat stress(HS)has been shown to adversely affect fish livers and can lead to extensive apoptosis.To investigate the relationship between endoplasmic reticulum(ER)stress and HS-induced apoptosis in fish livers,we isol...Heat stress(HS)has been shown to adversely affect fish livers and can lead to extensive apoptosis.To investigate the relationship between endoplasmic reticulum(ER)stress and HS-induced apoptosis in fish livers,we isolated and cultured primary hepatocytes of largemouth bass,Micropterus salmoides by trypsin method,then established an in-vitro model of liver cells under HS(35℃).The contents of lactic dehydrogenase(LDH)and hydrogen peroxide(H2O2)were determined to evaluate the effects of HS on hepatocyte injury and oxidative stress.RT-qPCR was performed to discover the key genes in unfolded protein response(UPR)pathways involved at different HS duration.ERS inhibitor 4-PBA and IRE1αinhibitor 4μ8C were used to further investigate the effects of HS on IRE1αapoptosis pathway in hepatocytes.Results show that HS led to significant increases in the release of LDH,the content of H2O2,and the expressions of oxidative protein folding genes(ero1αand pdi)under HS,suggesting severe hepatocyte injury and oxidative stress happened in heat-stressed largemouth bass hepatocytes.The continuous activation of IRE1αpathway genes(grp78,grp94,atf6,perk,eif2a,atf4,chop,ire1α,traf2,ask1,jnk1,and jnk2)indicated that HS led significantly to ER stress.In particular,the mRNA expression levels of ER stress-related genes(grp78,grp94,atf6,perk,ire1α,chop,jnk1,and jnk2)in the high temperature(HT)+4-PBA group and the HT+4μ8C group were significantly down-regulated under HS.After 4μ8C treatment,the expression levels of apoptosis-related genes(caspase-2,caspase-3,caspase-6,caspase-7,caspase-8,caspase-9,and caspase-10)and LDH content were significantly decreased,whereas the cell survival rate was significantly increased when given 4-PBA or 4μ8C treatment.These findings demonstrate that HS could induce liver apoptosis of largemouth bass through the IRE1αpathway,which may act as a key switch mediating liver apoptosis of largemouth bass under HS.展开更多
Global warming threatens freshwater ecosystems and compromises fish survival.To elucidate the role of miRNAs in the livers of heat stressed largemouth bass,juvenile fish was subject to heat stress under 37°C.Both...Global warming threatens freshwater ecosystems and compromises fish survival.To elucidate the role of miRNAs in the livers of heat stressed largemouth bass,juvenile fish was subject to heat stress under 37°C.Both mRNA-seq and miRNA-seq were conducted on the liver tissues under control and heat stress conditions.Differential gene expression analysis and enrichment analysis were performed on mRNA and miRNA expression profiles.A total of 406 differentially expressed genes(DEGs)were discovered,of which 212 were up-regulated and 194 were down-regulated.Most of the DEGs were significantly implicated in the regulation of“protein processing in endoplasmic reticulum”,“proteasome”,“steroid biosynthesis”,and“ornithine decarboxylase inhibitor activity”pathways.In addition,47 differentially expressed miRNAs(DEMs)were identified in largemouth bass livers under heat stress,including 21 up-regulated and 25 down-regulated miRNAs.A negatively regulated miRNA-mRNA network including 12 miRNAs and 19 mRNAs was constructed with DEMs involved in“protein degradation”,“calcium ion regulation”,“cell apoptosis”,and“lipid metabolism”.Moreover,this study indicated novel-miR-144 activated the IRE1 signaling pathway by targeting txndc5 to induce liver apoptosis in largemouth bass under heat stress.This study revealed the involvement of miRNA regulation in largemouth bass in response to heat stress.展开更多
The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chem...The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chemical bond type of intermetallic Pt-based catalysts,using phosphorus(P)doped L1_(0)-PtFeGa_(0.1)/C(P-L1_(0)-PtFeGa_(0.1)/C)as a proof of concept.X-ray absorption spectroscopy(XAS)demonstrated that the doped P transferred electrons to Pt,and thus,modified the electronic structure of Pt,weakening the adsorption strength with oxygen-containing species.Therefore P-L1_(0)-PtFeGa_(0.1)/C showed 13 times mass activity(MA)compared with commercial Pt/C,with a decay of only 28%after 100,000 potential cycles.When equipped in the membrane electrode assembly,the P-L1_(0)-PtFeGa_(0.1)/C catalyst also exhibited a remarkable activity(MA=0.84 A mgPt^(−1)at 0.9 V)and stability(MA retention=72%and voltage loss=9 mVat 0.8 A cm^(−2)after 30,000 cycles),making it one of the best performers among recorded Pt-based catalysts.Theoretical studies demonstrated that the doping of P optimized the adsorption energy between Pt and oxygen intermediates through sp-d orbital interactions and prevented metal dissolution by forming stronger Pt-P covalent bonds compared with Pt–Pt bonds.展开更多
For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but f...For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.展开更多
基金Supported by the Scientific Fund of Jiangsu Province(No.BY2015039-10)the Aquatic Three Project of Jiangsu Province(No.Y2017-37)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Heat stress(HS)has been shown to adversely affect fish livers and can lead to extensive apoptosis.To investigate the relationship between endoplasmic reticulum(ER)stress and HS-induced apoptosis in fish livers,we isolated and cultured primary hepatocytes of largemouth bass,Micropterus salmoides by trypsin method,then established an in-vitro model of liver cells under HS(35℃).The contents of lactic dehydrogenase(LDH)and hydrogen peroxide(H2O2)were determined to evaluate the effects of HS on hepatocyte injury and oxidative stress.RT-qPCR was performed to discover the key genes in unfolded protein response(UPR)pathways involved at different HS duration.ERS inhibitor 4-PBA and IRE1αinhibitor 4μ8C were used to further investigate the effects of HS on IRE1αapoptosis pathway in hepatocytes.Results show that HS led to significant increases in the release of LDH,the content of H2O2,and the expressions of oxidative protein folding genes(ero1αand pdi)under HS,suggesting severe hepatocyte injury and oxidative stress happened in heat-stressed largemouth bass hepatocytes.The continuous activation of IRE1αpathway genes(grp78,grp94,atf6,perk,eif2a,atf4,chop,ire1α,traf2,ask1,jnk1,and jnk2)indicated that HS led significantly to ER stress.In particular,the mRNA expression levels of ER stress-related genes(grp78,grp94,atf6,perk,ire1α,chop,jnk1,and jnk2)in the high temperature(HT)+4-PBA group and the HT+4μ8C group were significantly down-regulated under HS.After 4μ8C treatment,the expression levels of apoptosis-related genes(caspase-2,caspase-3,caspase-6,caspase-7,caspase-8,caspase-9,and caspase-10)and LDH content were significantly decreased,whereas the cell survival rate was significantly increased when given 4-PBA or 4μ8C treatment.These findings demonstrate that HS could induce liver apoptosis of largemouth bass through the IRE1αpathway,which may act as a key switch mediating liver apoptosis of largemouth bass under HS.
基金Supported by the Scientific Fund of Jiangsu Province (No.BY2015039-10)the Aquatic Three Project of Jiangsu Province (No.Y2017-37)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)the Jiangsu Funding Program for Excellent Postdoctoral Talent
文摘Global warming threatens freshwater ecosystems and compromises fish survival.To elucidate the role of miRNAs in the livers of heat stressed largemouth bass,juvenile fish was subject to heat stress under 37°C.Both mRNA-seq and miRNA-seq were conducted on the liver tissues under control and heat stress conditions.Differential gene expression analysis and enrichment analysis were performed on mRNA and miRNA expression profiles.A total of 406 differentially expressed genes(DEGs)were discovered,of which 212 were up-regulated and 194 were down-regulated.Most of the DEGs were significantly implicated in the regulation of“protein processing in endoplasmic reticulum”,“proteasome”,“steroid biosynthesis”,and“ornithine decarboxylase inhibitor activity”pathways.In addition,47 differentially expressed miRNAs(DEMs)were identified in largemouth bass livers under heat stress,including 21 up-regulated and 25 down-regulated miRNAs.A negatively regulated miRNA-mRNA network including 12 miRNAs and 19 mRNAs was constructed with DEMs involved in“protein degradation”,“calcium ion regulation”,“cell apoptosis”,and“lipid metabolism”.Moreover,this study indicated novel-miR-144 activated the IRE1 signaling pathway by targeting txndc5 to induce liver apoptosis in largemouth bass under heat stress.This study revealed the involvement of miRNA regulation in largemouth bass in response to heat stress.
基金supported by the National Natural Science Foundation of China(NSFC,grant nos.22122202 and 22072051)Zhenjiang Key Research and Development Program,Industry Foresight and Common Key Technologies,China(grant no.CQ2022006).
文摘The inadequate performance of oxygen reduction reaction(ORR)catalysts hampers the development of proton exchange membrane fuel cells(PEMFCs).Herein,we proposed an approach to tackle this problem by modulating the chemical bond type of intermetallic Pt-based catalysts,using phosphorus(P)doped L1_(0)-PtFeGa_(0.1)/C(P-L1_(0)-PtFeGa_(0.1)/C)as a proof of concept.X-ray absorption spectroscopy(XAS)demonstrated that the doped P transferred electrons to Pt,and thus,modified the electronic structure of Pt,weakening the adsorption strength with oxygen-containing species.Therefore P-L1_(0)-PtFeGa_(0.1)/C showed 13 times mass activity(MA)compared with commercial Pt/C,with a decay of only 28%after 100,000 potential cycles.When equipped in the membrane electrode assembly,the P-L1_(0)-PtFeGa_(0.1)/C catalyst also exhibited a remarkable activity(MA=0.84 A mgPt^(−1)at 0.9 V)and stability(MA retention=72%and voltage loss=9 mVat 0.8 A cm^(−2)after 30,000 cycles),making it one of the best performers among recorded Pt-based catalysts.Theoretical studies demonstrated that the doping of P optimized the adsorption energy between Pt and oxygen intermediates through sp-d orbital interactions and prevented metal dissolution by forming stronger Pt-P covalent bonds compared with Pt–Pt bonds.
基金National Key R&D Program of China(2016YFA0301302,2018YFB1107205)National Natural Science Foundation of China(NSFC)(11474010,11627803,61590933)
文摘For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.