期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries
1
作者 Zhedong Liu Jingchao Zhang +9 位作者 Jiawei Luo Zhaoxin Guo Haoran Jiang Zekun Li Yuhang Liu zijing song Rui Liu Wei-Di Liu Wenbin Hu Yanan Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期392-402,共11页
Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu... Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries. 展开更多
关键词 Nickel-rich layered oxides High-temperature shock Solid reaction kinetics Phase transition Reaction rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部