Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to...Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.展开更多
Primary appendiceal neoplasms represent a relatively low percentage of all gastrointestinal cancers. A subset of these neoplasms, those of epithelial origin, are characterised by the production of a considerable amoun...Primary appendiceal neoplasms represent a relatively low percentage of all gastrointestinal cancers. A subset of these neoplasms, those of epithelial origin, are characterised by the production of a considerable amount of mucus, which is referred to as appendiceal mucinous neoplasms (AMN). Appendiceal mucinous neoplasms (AMN) have a low incidence, are easily misdiagnosed, depend on postoperative examination for confirmation of the diagnosis, are prone to form a “diagnosis”, and have a high incidence of the disease. Furthermore, they are prone to form peritoneal pseudomyxoma peritonei (PMP), are controversial in surgical decision-making, are prone to recurring after surgery alone, and are tricky to manage clinically. In this paper, we review the pathological characteristics, diagnosis and treatment of appendiceal mucinous tumours in the light of recent literature reports, with a view to providing certain references for the clinical diagnosis and treatment of this disease. .展开更多
Objective:To comprehend the clinical characteristics and treatment approaches for children and adolescents in Qinghai Province with two types of echinococcosis,cystic echinococcosis(CE)and alveolar echinococcosis(AE)....Objective:To comprehend the clinical characteristics and treatment approaches for children and adolescents in Qinghai Province with two types of echinococcosis,cystic echinococcosis(CE)and alveolar echinococcosis(AE).Methods:A total of 128 pediatric inpatients with echinococcosis at the People’s Hospital of Qinghai Province and the Clinical Research Institute of Echinococcosis of Qinghai Province between January 2016 and December 2021 were chosen as subjects.Demographic and clinical data were collected,and double data entry was executed using EpiData 3.02.Factors influencing the cure of echinococcosis were analyzed with echinococcosis cure as the dependent variable,employing statistical analysis via SPSS 19.0.Results:Of the cases,35.9%had CE,and 64.1%had AE.Both types were observed in patients of all ages,with the majority aged 13-18.The number of cysts and their sizes varied between CE and AE.Complications were prevalent,including liver,gallbladder,lung,and nutritional complications.Univariate analyses revealed significant differences in outcomes based on factors such as cyst size(for CE),liver function grade(for AE),hydatid hypersensitivity test,operation,and length of hospital stay(P<0.05).Conclusion:This comprehensive analysis of hospitalized cases sheds light on the clinical data of echinococcosis in children and adolescents in Qinghai Province.The findings contribute to a scientific foundation for formulating effective prevention and control measures tailored to this demographic,facilitating an improved understanding of echinococcosis in Qinghai province.展开更多
Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these mat...Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.展开更多
Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strai...Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strain U32 comprising 10 236 715 base pairs, is one of the largest prokaryotic genomes ever sequenced so far. Unlike the linear topology found in streptomycetes, this chromosome is circular, particularly similar to that of Saccharopolyspora erythraea and Nocardia farcinica, representing their close relationship in phylogeny and taxonomy. Although the predicted 9 228 protein-coding genes in the A. mediterranei genome shared the greatest number of orthologs with those of S. erythraea, it was unexpectedly followed by Streptomyces coelicolor rather than N. farcinica, indicating the distinct metabolic characteristics evolved via adaptation to diverse ecological niches. Besides a core region analogous to that common in streptomycetes, a novel 'quasicore' with typical core characteristics is defined within the non-core region, where 21 out of the total 26 gene clusters for secondary metabolite production are located. The rifamycin biosynthesis gene cluster located in the core encodes a cytochrome P450 enzyme essential for the conversion of rifamycin SV to B, revealed by comparing to the highly homologous cluster of the rifamycin B-producing strain S699 and further confirmed by genetic complementation. The genomic information of A. mediterranei demonstrates a metabolic network orchestrated not only for extensive utilization of various carbon sources and inorganic nitrogen compounds but also for effective funneling of metabolic intermediates into the secondary antibiotic synthesis process under the control of a seemingly complex regulatory mechanism.展开更多
The structure and moisture retention of Tremella polysaccharide fermented from GCMCC5.39(FTP)were evaluated.After UV,infrared spectrum analysis,HPAEC-PAD,HPSEC and 1 D NMR analysis,the composition of the purifi ed FTP...The structure and moisture retention of Tremella polysaccharide fermented from GCMCC5.39(FTP)were evaluated.After UV,infrared spectrum analysis,HPAEC-PAD,HPSEC and 1 D NMR analysis,the composition of the purifi ed FTP was determined.Purifi ed components of fermented Tremella polysaccharide(FTPS)was made of galactose,mannose,glucose,galactosmine,glucosamine,and contain a large amount of hydroxyl,carbonyl and amino groups.FTPS wasα-neutral pyranose without uronic acid.FTPS-1 and FTPS-2 were obtained after purifi cation by DEAE-Sepharose Fast Flow Column.The molecular weights of FTPS-1 and FTPS-2 were 25722 and 177263 Da.FTPS-2 had a better ability to prevent moisture loss,and the optimal moisture retention period was 0–4 h.FTPS-2 could signifi cantly increase the moisture content of the skin epidermis and showed a dose-concentration relationship.The effect of FTPS-2 on the expression of different moisturizing genes was evaluated in a human skin keratinocyte model.The results showed that FTPS-2 has no cytotoxicity,and could signifi cantly promote AQP3,TGM1,CASP14,HYAL2,FLG gene expression level in HaCaT cells.It has the most signifi cant infl uence at HYAL2 protein expression on 50μg/mL.展开更多
While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.Howeve...While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.However,the influence of fluorination degree of the bulky aromatic cation on the per-formance of resulting PSCs has not been scrutinized.Here,2D perovskites(FxPEA)_(2)PbI_(4)(x=1,2,3,5)are grown in situ on the surface of the three-dime nsion al(3D)perovskite and dem on strate effective passivation of the surface defects of 3D perovskite.The power conversion efficiency(PCE)of the optimized devices were boosted from 20.75%for the control device to 21.09%,22.06%,22.74%and 21.86%for 2D/3D devices treated with 4-fluorophenethylamine iodide,3,5-difluorophenylethylamine iodide,2,4,5-trifluoroethylphenylethylamine iodide,and 1,2,3,4,5-pentafluorophenylethylamine iodide,respectively.We firstly reported two unexplored RP-type layered perovskites with F_(2)PEAI and F_(3)PEAI as bulky cations.The combined experimental and theoretical analysis revealed the reasons behind the various morphology,device performances,dynamic behavior,and humidity stability.The best performing F_(5)PEAI-treated device retaining 95.0%of its initial PCE under ambient atmosphere(with RH of 60%±5%)without encapsulation for 300 h storage.This work provides useful guidance for selecting fluorinated bulky cations with different molecular electronic properties,which will play an essential role in further improving the performance/stability of PSCs for the sake of further commercialization.展开更多
[Objective] This experiment aimed to investigate the effects of continuous cropping of Panax notoginseng on the properties of rhizosphere soil. [Method] A total of 12 rhizospheres oil samples were collected in the fie...[Objective] This experiment aimed to investigate the effects of continuous cropping of Panax notoginseng on the properties of rhizosphere soil. [Method] A total of 12 rhizospheres oil samples were collected in the fields continuously cropped with P. notoginseng for different years and the soil properties including pH value, contents of available N, available K, available P,total N, total K, total P and organic matter were determined. [Result] With the increase in the number of years of continuous cropping, seven soli indices: soil pH value, organic matter content, total N, total P, total K, available P and available K gradually increased, while available N showed a gradual downward trend. The contents of organic matter content, total N, total P, total K,available P, available K and available N after three years of continuous cropping were increased by 74.93%, 65.85%, 123.82%,18.78%, 341.67%, 120.16% and-32.16%, respectively, indicating that continuous cropping of P. notoginseng resulted in nutrient enrichment in rhizosphere soils. The pH value and available N in IBC(soil inside the border check) and UBC(soil under the border check) were higher than that in BBC(soil beside the border check), suggesting that the soil was gradually alkalized due to the continuous cropping of P. notoginseng. [Conclusion] These results suggest that pH change and nutrient imbalance may be the obstacles to the continuous cropping of P. notoginseng.展开更多
Organic–inorganic halide perovskite solar cells(PSCs)have delivered power conversion efficiency(PCE)on par with that of crystalline silicon solar cells,due to the considerable effort on the optimization of perovskite...Organic–inorganic halide perovskite solar cells(PSCs)have delivered power conversion efficiency(PCE)on par with that of crystalline silicon solar cells,due to the considerable effort on the optimization of perovskite materials and devices[1].The three-dimensional(3D)perovskite-based PSCs with the standard n–i–p architecture gave a certified PCE of25.5%[2].However,the poor device stability under operating conditions remains an obstacle to commercialization.The 3D hybrid perovskite materials are susceptible to oxygen,UV light,humidity,heat,and electric fields[3].To improve device stability,two main strategies are applied:(1)improving the intrinsic stability[4];(2)providing sufficient protection.展开更多
Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing....Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.展开更多
With the rapid development and competition in bank business, Financial innovation appear constantly, private and foreign Banks are becoming the potential entrants. The original management, control and business mode al...With the rapid development and competition in bank business, Financial innovation appear constantly, private and foreign Banks are becoming the potential entrants. The original management, control and business mode already can not adapt to the new situation,it' s necessary to adopt the new development strategy to meet new opportunities and challenges. This article embarked from the analysis of macro environment and based on the pingxiang area characteristic analyzes the current situation of CCB pingxiang branch, puts forward some countermeasures to the implementation of the strategy of CCB pingxiang branch.展开更多
The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum(ER)presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy.In this study,we initially valida...The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum(ER)presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy.In this study,we initially validated celastrol(CEL)as an inducer of immunogenic cell death(ICD)by promoting ER stress and autophagy in colorectal cancer(CRC)cells.Subsequently,an ER-targeted strategy was posited,involving the codelivery of CEL with PD-L1 small interfering RNAs(siRNA)using KDEL peptide-modified exosomes derived from milk(KME),to enhance chemoimmunotherapy outcomes.Our findings demonstrate the efficient transportation of KME to the ER via the Golgi-to-ER pathway.Compared to their non-targeting counterparts,KME exhibited a significant augmentation of the CEL-induced ICD effect.Additionally,it facilitated the release of danger signaling molecules(DAMPs),thereby stimulating the antigen-presenting function of dendritic cells and promoting the infiltration of T cells into the tumor.Concurrently,the ER-targeted delivery of PD-L1 siRNA resulted in the downregulation of both intracellular and membrane PD-L1 protein expression,consequently fostering the proliferation and activity of CD8^(+)T cells.Ultimately,the ER-targeted formulation exhibited enhanced anti-tumor efficacy and provoked anti-tumor immune responses against orthotopic colorectal tumors in vivo.Collectively,a robust ER-targeted delivery strategy provides an encouraging approach for achieving potent cancer chemoimmunotherapy.展开更多
In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selec...In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.展开更多
Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors a...Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors and uncertainties resulting from model selection and parameter fittings,given the paucity of monitoring data in field settings.This paper proposes a novel approach to estimate tunnelling-induced ground deformations by applying Bayesian model averaging to several representative prediction models.By accounting for both model and parameter uncertainties,this approach enables more realistic predictions of ground deformations than individual models.Specifically,our results indicate that the Gonzalez-Sagaseta model outperforms other models in predicting ground surface settlements,while the Loganathan-Poulos model is most suitable for predicting subsurface vertical and horizontal deformations.Importantly,our analysis reveals that when monitoring data are sparse,model uncertainties may contribute up to 78.7%of the total uncertainties.Thus,obtaining sufficient data for parameter fitting is crucial for accurate predictions.The proposed method in this study offers a more realistic and efficient prediction of tunnelling-induced ground deformations.展开更多
Background: DOK3 (Downstream of kinase 3) is involved primarily with immune cell infiltration. Recent research reported the role of DOK3 in tumor progression, with opposite effects in lung cancer and gliomas;however, ...Background: DOK3 (Downstream of kinase 3) is involved primarily with immune cell infiltration. Recent research reported the role of DOK3 in tumor progression, with opposite effects in lung cancer and gliomas;however, its role in prostate cancer (PCa) remains elusive. This study aimed to explore the role of DOK3 in PCa and to determine the mechanisms involved. Methods: To investigate the functions and mechanisms of DOK3 in PCa, we performed bioinformatic and biofunctional analyses. Samples from patients with PCa were collected from West China Hospital, and 46 were selected for the final correlation analysis. A lentivirus-based short hairpin ribonucleic acid (shRNA) carrier was established for silencing DOK3. A series of experiments involving the cell counting kit-8, bromodeoxyuridine, and flow cytometry assays were performed to identify cell proliferation and apoptosis. Changes in biomarkers from the nuclear factor kappa B (NF-κB) signaling pathway were detected to verify the relationship between DOK3 and the NF-κB pathway. A subcutaneous xenograft mouse model was performed to examine phenotypes after knocking down DOK3 in vivo . Rescue experiments with DOK3 knockdown and NF-κB pathway activation were designed to verify regulating effects. Results: DOK3 was up-regulated in PCa cell lines and tissues. In addition, a high level of DOK3 was predictive of higher pathological stages and worse prognoses. Similar results were observed with PCa patient samples. After silencing DOK3 in PCa cell lines 22RV1 and PC3, cell proliferation was significantly inhibited while apoptosis was promoted. Gene set enrichment analysis revealed that DOK3 function was enriched in the NF-κB pathway. Mechanism experiments determined that knockdown of DOK3 suppressed activation of the NF-κB pathway, increased the expressions of B-cell lymphoma-2 like 11 (BIM) and B-cell lymphoma-2 associated X (BAX), and decreased the expression of phosphorylated-P65 and X-linked inhibitor of apoptosis (XIAP). In the rescue experiments, pharmacological activation of NF-κB by tumor necrosis factor-α (TNF-α) partially recovered cell proliferation after the knockdown of DOK3. Conclusion: Our findings suggest that overexpression of DOK3 promotes PCa progression by activating the NF-κB signaling pathway.展开更多
To the Editor:Testosterone is a fundamental male sex hormone produced by the testicular Leydig cells.Testosterone levels are affected by age,peaking in the 20s and 30s and gradually declining thereafter.[1]Low testost...To the Editor:Testosterone is a fundamental male sex hormone produced by the testicular Leydig cells.Testosterone levels are affected by age,peaking in the 20s and 30s and gradually declining thereafter.[1]Low testosterone level may predispose men,especially older men,to a poor prognosis or death in coronavirus disease 2019(COVID-19).[2]Therefore,testosterone levels have a significant impact on the health status of older men.The identification of modifiable non-drug factors affecting testosterone levels in older men is important for improving their health.展开更多
Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morp...Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morphology.However,there is a lack of assessment of the effect of roughness on emissivity and a straightforward method for estimating the emissivity of rough surfaces.This paper established an estimating method based on constructing random rough surfaces to predict rough surface(Geometric region)emissivity for metal solids.Based on this method,the emissivity of ideal gray and non-gray body surfaces was calculated and analyzed.The calculated and measured spectral emissivities of GH3044,K465,DD6,and TC4 alloys with different roughness were compared.The results show that the emissivity increases with the roughness degree,and the enhancement effect weakens with the increase of roughness or emissivity due to the existing limit(emissivityε=1.0).At the same time,the roughness would not change the overall spectral distribution characteristics but may attenuate the local features of the spectral emissivity.The estimated results are in good agreement with the experimental data for the above alloys'rough surfaces.This study provides a new reliable approach to obtaining the spectral emissivity of rough surfaces.This approach is especially beneficial for measuring objects in extreme environments where emissivity is difficult to obtain.Meanwhile,this study promotes an understanding of surface morphology's effect mechanism on emissivity.展开更多
Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an eff...Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an effective“bridging interface”strategy between the perovskite/2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD)that modulates interfacial charge transfer and improves hole mobility using radical-containing donor-acceptor nanographenes(D-A NGs)possessing electron-deficient perchlorinated NGs and electron-rich aniline derivatives.The fully delocalized backbone of nanographene formed a conjugated bridge for intermolecular charge transfer and generated stable radical cations,verified by electron spin resonance.Lamellar andπ-πstacking orientation of D-A NGs also provided advantageous hopping transport channels.Besides favorable charge transfer within D-A NGs,systematic explorations indicated a strong interface coupling and noticeable charge transfer across the D-A NGs and perovskite interface,where electrons would flow from D-A NGs to perovskite,and holes would flow from perovskite to D-A NGs.Moreover,the hole mobility of spiro-OMeTAD was also enhanced because the D-A NGs would diffuse into the spiro-OMeTAD layer.As a result,planar n-i-p perovskite solar cellsmodified byD-ANG-OMe/D-ANG-tBudeliveredchampion power conversion efficiencies(PCEs)of 23.25%and 23.51%,respectively.展开更多
Ultrafast fiber lasers are in great demand for various applications, such as optical communication, spectroscopy,biomedical diagnosis, and industrial fabrication. Here, we report the highly stable femtosecond pulse ge...Ultrafast fiber lasers are in great demand for various applications, such as optical communication, spectroscopy,biomedical diagnosis, and industrial fabrication. Here, we report the highly stable femtosecond pulse generation from a MXene mode-locked fiber laser. We have prepared the high-quality Ti_3C_2 T_x nanosheets via the etching method, and characterized their ultrafast dynamics and broadband nonlinear optical responses. The obvious intensity-and wavelength-dependent nonlinear responses have been observed and investigated. In addition, a highly stable femtosecond fiber laser with signal-to-noise ratio up to 70.7 dB and central wavelength of 1567.3 nm has been delivered. The study may provide some valuable design guidelines for the development of ultrafast, broadband nonlinear optical modulators, and open new avenues toward advanced photonic devices based on MXenes.展开更多
基金supported by grants from National Natural Science Foundation of China(32001571)R&D Program of Beijing Municipal Education Commission(KM202212448003,KM202312448004)+4 种基金Science and Technology Innovation Project of Beijing Vocational College of Agriculture(XY-YF-22-02)Zhongshan Biological Breeding Laboratory(ZSBBL-KY2023-03)China Agriculture Research System of MOF and MARA(CARS-04)Jiangsu Collaborative Innovation Center for Modern Crop Production(JCICMCP)Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP).
文摘Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.
文摘Primary appendiceal neoplasms represent a relatively low percentage of all gastrointestinal cancers. A subset of these neoplasms, those of epithelial origin, are characterised by the production of a considerable amount of mucus, which is referred to as appendiceal mucinous neoplasms (AMN). Appendiceal mucinous neoplasms (AMN) have a low incidence, are easily misdiagnosed, depend on postoperative examination for confirmation of the diagnosis, are prone to form a “diagnosis”, and have a high incidence of the disease. Furthermore, they are prone to form peritoneal pseudomyxoma peritonei (PMP), are controversial in surgical decision-making, are prone to recurring after surgery alone, and are tricky to manage clinically. In this paper, we review the pathological characteristics, diagnosis and treatment of appendiceal mucinous tumours in the light of recent literature reports, with a view to providing certain references for the clinical diagnosis and treatment of this disease. .
基金2021-2022 Qinghai Province“Kunlun Talents”Action Plan of Young and Middle-Aged Scientific and Technological Talents.
文摘Objective:To comprehend the clinical characteristics and treatment approaches for children and adolescents in Qinghai Province with two types of echinococcosis,cystic echinococcosis(CE)and alveolar echinococcosis(AE).Methods:A total of 128 pediatric inpatients with echinococcosis at the People’s Hospital of Qinghai Province and the Clinical Research Institute of Echinococcosis of Qinghai Province between January 2016 and December 2021 were chosen as subjects.Demographic and clinical data were collected,and double data entry was executed using EpiData 3.02.Factors influencing the cure of echinococcosis were analyzed with echinococcosis cure as the dependent variable,employing statistical analysis via SPSS 19.0.Results:Of the cases,35.9%had CE,and 64.1%had AE.Both types were observed in patients of all ages,with the majority aged 13-18.The number of cysts and their sizes varied between CE and AE.Complications were prevalent,including liver,gallbladder,lung,and nutritional complications.Univariate analyses revealed significant differences in outcomes based on factors such as cyst size(for CE),liver function grade(for AE),hydatid hypersensitivity test,operation,and length of hospital stay(P<0.05).Conclusion:This comprehensive analysis of hospitalized cases sheds light on the clinical data of echinococcosis in children and adolescents in Qinghai Province.The findings contribute to a scientific foundation for formulating effective prevention and control measures tailored to this demographic,facilitating an improved understanding of echinococcosis in Qinghai province.
基金the National Natural Science Foundation of China (22175180, 21975260)。
文摘Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.
基金This paper is dedicated to the late Professor JS Chiao, who initiated the research in China for rifamycin production employing A. mediterranei more than 30 years ago and who continued the endeavor to resolve the mechanism of the 'nitrate stimulating effect' up to the last breath of his life. This work was supported by the National Natural Science Foundation of China (30830002), the National High Technology Research and Development Program of China (2007AA021301, 2007AA021503), and the Research Unit Fund of Li Ka Shing Institute of Health Sciences (7103506).
文摘Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strain U32 comprising 10 236 715 base pairs, is one of the largest prokaryotic genomes ever sequenced so far. Unlike the linear topology found in streptomycetes, this chromosome is circular, particularly similar to that of Saccharopolyspora erythraea and Nocardia farcinica, representing their close relationship in phylogeny and taxonomy. Although the predicted 9 228 protein-coding genes in the A. mediterranei genome shared the greatest number of orthologs with those of S. erythraea, it was unexpectedly followed by Streptomyces coelicolor rather than N. farcinica, indicating the distinct metabolic characteristics evolved via adaptation to diverse ecological niches. Besides a core region analogous to that common in streptomycetes, a novel 'quasicore' with typical core characteristics is defined within the non-core region, where 21 out of the total 26 gene clusters for secondary metabolite production are located. The rifamycin biosynthesis gene cluster located in the core encodes a cytochrome P450 enzyme essential for the conversion of rifamycin SV to B, revealed by comparing to the highly homologous cluster of the rifamycin B-producing strain S699 and further confirmed by genetic complementation. The genomic information of A. mediterranei demonstrates a metabolic network orchestrated not only for extensive utilization of various carbon sources and inorganic nitrogen compounds but also for effective funneling of metabolic intermediates into the secondary antibiotic synthesis process under the control of a seemingly complex regulatory mechanism.
基金We gratefully acknowledge the financial support from the Open Project Program of National R&D Center for Edible Fungus Processing Technology(20200110)Shanghai Science and Technology Commission Project(18495810900).
文摘The structure and moisture retention of Tremella polysaccharide fermented from GCMCC5.39(FTP)were evaluated.After UV,infrared spectrum analysis,HPAEC-PAD,HPSEC and 1 D NMR analysis,the composition of the purifi ed FTP was determined.Purifi ed components of fermented Tremella polysaccharide(FTPS)was made of galactose,mannose,glucose,galactosmine,glucosamine,and contain a large amount of hydroxyl,carbonyl and amino groups.FTPS wasα-neutral pyranose without uronic acid.FTPS-1 and FTPS-2 were obtained after purifi cation by DEAE-Sepharose Fast Flow Column.The molecular weights of FTPS-1 and FTPS-2 were 25722 and 177263 Da.FTPS-2 had a better ability to prevent moisture loss,and the optimal moisture retention period was 0–4 h.FTPS-2 could signifi cantly increase the moisture content of the skin epidermis and showed a dose-concentration relationship.The effect of FTPS-2 on the expression of different moisturizing genes was evaluated in a human skin keratinocyte model.The results showed that FTPS-2 has no cytotoxicity,and could signifi cantly promote AQP3,TGM1,CASP14,HYAL2,FLG gene expression level in HaCaT cells.It has the most signifi cant infl uence at HYAL2 protein expression on 50μg/mL.
基金financial support from the National Natural Science Foundation of China (Grant No. 21975260)the financial support from the National Natural Science Foundation of China (Grant No. 22078241).
文摘While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.However,the influence of fluorination degree of the bulky aromatic cation on the per-formance of resulting PSCs has not been scrutinized.Here,2D perovskites(FxPEA)_(2)PbI_(4)(x=1,2,3,5)are grown in situ on the surface of the three-dime nsion al(3D)perovskite and dem on strate effective passivation of the surface defects of 3D perovskite.The power conversion efficiency(PCE)of the optimized devices were boosted from 20.75%for the control device to 21.09%,22.06%,22.74%and 21.86%for 2D/3D devices treated with 4-fluorophenethylamine iodide,3,5-difluorophenylethylamine iodide,2,4,5-trifluoroethylphenylethylamine iodide,and 1,2,3,4,5-pentafluorophenylethylamine iodide,respectively.We firstly reported two unexplored RP-type layered perovskites with F_(2)PEAI and F_(3)PEAI as bulky cations.The combined experimental and theoretical analysis revealed the reasons behind the various morphology,device performances,dynamic behavior,and humidity stability.The best performing F_(5)PEAI-treated device retaining 95.0%of its initial PCE under ambient atmosphere(with RH of 60%±5%)without encapsulation for 300 h storage.This work provides useful guidance for selecting fluorinated bulky cations with different molecular electronic properties,which will play an essential role in further improving the performance/stability of PSCs for the sake of further commercialization.
基金Supported by National Natural Science Foundation of China(81102751)the National Key Technology R&D Program of China(2006BAI09B03)
文摘[Objective] This experiment aimed to investigate the effects of continuous cropping of Panax notoginseng on the properties of rhizosphere soil. [Method] A total of 12 rhizospheres oil samples were collected in the fields continuously cropped with P. notoginseng for different years and the soil properties including pH value, contents of available N, available K, available P,total N, total K, total P and organic matter were determined. [Result] With the increase in the number of years of continuous cropping, seven soli indices: soil pH value, organic matter content, total N, total P, total K, available P and available K gradually increased, while available N showed a gradual downward trend. The contents of organic matter content, total N, total P, total K,available P, available K and available N after three years of continuous cropping were increased by 74.93%, 65.85%, 123.82%,18.78%, 341.67%, 120.16% and-32.16%, respectively, indicating that continuous cropping of P. notoginseng resulted in nutrient enrichment in rhizosphere soils. The pH value and available N in IBC(soil inside the border check) and UBC(soil under the border check) were higher than that in BBC(soil beside the border check), suggesting that the soil was gradually alkalized due to the continuous cropping of P. notoginseng. [Conclusion] These results suggest that pH change and nutrient imbalance may be the obstacles to the continuous cropping of P. notoginseng.
基金financial support from the National Natural Science Foundation of China(21975260)the NSFC-CNR Exchange Program(22011530391)+1 种基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,and21961160720)for financial support。
文摘Organic–inorganic halide perovskite solar cells(PSCs)have delivered power conversion efficiency(PCE)on par with that of crystalline silicon solar cells,due to the considerable effort on the optimization of perovskite materials and devices[1].The three-dimensional(3D)perovskite-based PSCs with the standard n–i–p architecture gave a certified PCE of25.5%[2].However,the poor device stability under operating conditions remains an obstacle to commercialization.The 3D hybrid perovskite materials are susceptible to oxygen,UV light,humidity,heat,and electric fields[3].To improve device stability,two main strategies are applied:(1)improving the intrinsic stability[4];(2)providing sufficient protection.
基金financial support from the National Natural Science Foundation of China (NSFC)(21805128)the National Natural Science Foundation of China (21774055)+3 种基金the financial support from the National Natural Science Foundation of China(21975260)the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)financial support of Guangdong Provincial Key Laboratory Program(2021B1212040001) from the Department of Science and Technology of Guangdong Provincethe NSFC-CNR exchange program of NSFC(22011530391)。
文摘Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.
文摘With the rapid development and competition in bank business, Financial innovation appear constantly, private and foreign Banks are becoming the potential entrants. The original management, control and business mode already can not adapt to the new situation,it' s necessary to adopt the new development strategy to meet new opportunities and challenges. This article embarked from the analysis of macro environment and based on the pingxiang area characteristic analyzes the current situation of CCB pingxiang branch, puts forward some countermeasures to the implementation of the strategy of CCB pingxiang branch.
基金the financial support from the National Science Fund of Distinguished Young Scholars(No.82025032,China)the National Natural Science Foundation of China(No.82073773,China)+5 种基金the Key Research Program of Chinese Academy of Sciences(No.ZDBS-ZRKJZ-TLC005,China)the"Open Competition to Select the Best Candidates"Key Technology Program for Nucleic Acid Drugs of NCTIB(No.NCTIB2022HS01006,China)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001,China)Shanghai Action Plan for Science,Technology,and Innovation(No.23HC1401200,China)Shanghai Post-doctoral Excellence Program(No.2022693,China)Shanghai Institute of Materia Medica,Chinese Academy of Sciences(No.SIMM0220232001,China).
文摘The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum(ER)presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy.In this study,we initially validated celastrol(CEL)as an inducer of immunogenic cell death(ICD)by promoting ER stress and autophagy in colorectal cancer(CRC)cells.Subsequently,an ER-targeted strategy was posited,involving the codelivery of CEL with PD-L1 small interfering RNAs(siRNA)using KDEL peptide-modified exosomes derived from milk(KME),to enhance chemoimmunotherapy outcomes.Our findings demonstrate the efficient transportation of KME to the ER via the Golgi-to-ER pathway.Compared to their non-targeting counterparts,KME exhibited a significant augmentation of the CEL-induced ICD effect.Additionally,it facilitated the release of danger signaling molecules(DAMPs),thereby stimulating the antigen-presenting function of dendritic cells and promoting the infiltration of T cells into the tumor.Concurrently,the ER-targeted delivery of PD-L1 siRNA resulted in the downregulation of both intracellular and membrane PD-L1 protein expression,consequently fostering the proliferation and activity of CD8^(+)T cells.Ultimately,the ER-targeted formulation exhibited enhanced anti-tumor efficacy and provoked anti-tumor immune responses against orthotopic colorectal tumors in vivo.Collectively,a robust ER-targeted delivery strategy provides an encouraging approach for achieving potent cancer chemoimmunotherapy.
基金the funding support from the National Natural Science Foundation of China(Nos.22202036 and 22302001)the Jilin Province Scientific,the Technological Planning Project of China(No.20230101292JC).
文摘In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.
基金supported by the China Scholarship Council(Grant No.202206370130)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2023ZZTS0034)。
文摘Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors and uncertainties resulting from model selection and parameter fittings,given the paucity of monitoring data in field settings.This paper proposes a novel approach to estimate tunnelling-induced ground deformations by applying Bayesian model averaging to several representative prediction models.By accounting for both model and parameter uncertainties,this approach enables more realistic predictions of ground deformations than individual models.Specifically,our results indicate that the Gonzalez-Sagaseta model outperforms other models in predicting ground surface settlements,while the Loganathan-Poulos model is most suitable for predicting subsurface vertical and horizontal deformations.Importantly,our analysis reveals that when monitoring data are sparse,model uncertainties may contribute up to 78.7%of the total uncertainties.Thus,obtaining sufficient data for parameter fitting is crucial for accurate predictions.The proposed method in this study offers a more realistic and efficient prediction of tunnelling-induced ground deformations.
基金supported by the National Key Research and Development Program of China(No.2017YFC0908003).
文摘Background: DOK3 (Downstream of kinase 3) is involved primarily with immune cell infiltration. Recent research reported the role of DOK3 in tumor progression, with opposite effects in lung cancer and gliomas;however, its role in prostate cancer (PCa) remains elusive. This study aimed to explore the role of DOK3 in PCa and to determine the mechanisms involved. Methods: To investigate the functions and mechanisms of DOK3 in PCa, we performed bioinformatic and biofunctional analyses. Samples from patients with PCa were collected from West China Hospital, and 46 were selected for the final correlation analysis. A lentivirus-based short hairpin ribonucleic acid (shRNA) carrier was established for silencing DOK3. A series of experiments involving the cell counting kit-8, bromodeoxyuridine, and flow cytometry assays were performed to identify cell proliferation and apoptosis. Changes in biomarkers from the nuclear factor kappa B (NF-κB) signaling pathway were detected to verify the relationship between DOK3 and the NF-κB pathway. A subcutaneous xenograft mouse model was performed to examine phenotypes after knocking down DOK3 in vivo . Rescue experiments with DOK3 knockdown and NF-κB pathway activation were designed to verify regulating effects. Results: DOK3 was up-regulated in PCa cell lines and tissues. In addition, a high level of DOK3 was predictive of higher pathological stages and worse prognoses. Similar results were observed with PCa patient samples. After silencing DOK3 in PCa cell lines 22RV1 and PC3, cell proliferation was significantly inhibited while apoptosis was promoted. Gene set enrichment analysis revealed that DOK3 function was enriched in the NF-κB pathway. Mechanism experiments determined that knockdown of DOK3 suppressed activation of the NF-κB pathway, increased the expressions of B-cell lymphoma-2 like 11 (BIM) and B-cell lymphoma-2 associated X (BAX), and decreased the expression of phosphorylated-P65 and X-linked inhibitor of apoptosis (XIAP). In the rescue experiments, pharmacological activation of NF-κB by tumor necrosis factor-α (TNF-α) partially recovered cell proliferation after the knockdown of DOK3. Conclusion: Our findings suggest that overexpression of DOK3 promotes PCa progression by activating the NF-κB signaling pathway.
基金National Key Research and Development Program of China(No.2017YFC0908003)National Natural Science Foundation of China(Nos.81902578 and 81974098)+3 种基金China Post-doctoral Science Foundation(No.2017M612971)Post-doctoral Science Research Foundation of Sichuan University(No.2020SCU12041)Post-doctoral Research Project,West China Hospital,Sichuan University(No.2018HXBH085)National Clinical Research Center for Geriatrics,West China Hospital,Sichuan University(No.Z2018C01)
文摘To the Editor:Testosterone is a fundamental male sex hormone produced by the testicular Leydig cells.Testosterone levels are affected by age,peaking in the 20s and 30s and gradually declining thereafter.[1]Low testosterone level may predispose men,especially older men,to a poor prognosis or death in coronavirus disease 2019(COVID-19).[2]Therefore,testosterone levels have a significant impact on the health status of older men.The identification of modifiable non-drug factors affecting testosterone levels in older men is important for improving their health.
基金funded by the Department of Science and Technology of Sichuan Province(Nos.2021JDTD0030,2022JDJQ0033,and 2022012)the National Natural Science Foundation of China(Nos.U20A20213 and 62275059)+2 种基金the National Science and Technology Major Project(J2019-V-0006-0100)Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Chengdu Science and Technology Project(No.2020-GH02-0065-HZ).
文摘Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morphology.However,there is a lack of assessment of the effect of roughness on emissivity and a straightforward method for estimating the emissivity of rough surfaces.This paper established an estimating method based on constructing random rough surfaces to predict rough surface(Geometric region)emissivity for metal solids.Based on this method,the emissivity of ideal gray and non-gray body surfaces was calculated and analyzed.The calculated and measured spectral emissivities of GH3044,K465,DD6,and TC4 alloys with different roughness were compared.The results show that the emissivity increases with the roughness degree,and the enhancement effect weakens with the increase of roughness or emissivity due to the existing limit(emissivityε=1.0).At the same time,the roughness would not change the overall spectral distribution characteristics but may attenuate the local features of the spectral emissivity.The estimated results are in good agreement with the experimental data for the above alloys'rough surfaces.This study provides a new reliable approach to obtaining the spectral emissivity of rough surfaces.This approach is especially beneficial for measuring objects in extreme environments where emissivity is difficult to obtain.Meanwhile,this study promotes an understanding of surface morphology's effect mechanism on emissivity.
基金the financial support from the National Natural Science Foundation of China(grant nos.21975260 and 22175180)the National Natural Science Foundation of China-National Research Council of Italy(NSFC-CNR)Exchange Program of NSFC(grant no.22011530391)The GIWAXS measurements were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute(grant nos.2022A1654,2022A1777,and 2022A1822).
文摘Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an effective“bridging interface”strategy between the perovskite/2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD)that modulates interfacial charge transfer and improves hole mobility using radical-containing donor-acceptor nanographenes(D-A NGs)possessing electron-deficient perchlorinated NGs and electron-rich aniline derivatives.The fully delocalized backbone of nanographene formed a conjugated bridge for intermolecular charge transfer and generated stable radical cations,verified by electron spin resonance.Lamellar andπ-πstacking orientation of D-A NGs also provided advantageous hopping transport channels.Besides favorable charge transfer within D-A NGs,systematic explorations indicated a strong interface coupling and noticeable charge transfer across the D-A NGs and perovskite interface,where electrons would flow from D-A NGs to perovskite,and holes would flow from perovskite to D-A NGs.Moreover,the hole mobility of spiro-OMeTAD was also enhanced because the D-A NGs would diffuse into the spiro-OMeTAD layer.As a result,planar n-i-p perovskite solar cellsmodified byD-ANG-OMe/D-ANG-tBudeliveredchampion power conversion efficiencies(PCEs)of 23.25%and 23.51%,respectively.
基金National Natural Science Foundation of China(NSFC)(11574079,61475102,61775056)Natural Science Foundation of Hunan Province(2017JJ1013)Ministry of Education of the People’s Republic of China(MOE)(6141A02033404)
文摘Ultrafast fiber lasers are in great demand for various applications, such as optical communication, spectroscopy,biomedical diagnosis, and industrial fabrication. Here, we report the highly stable femtosecond pulse generation from a MXene mode-locked fiber laser. We have prepared the high-quality Ti_3C_2 T_x nanosheets via the etching method, and characterized their ultrafast dynamics and broadband nonlinear optical responses. The obvious intensity-and wavelength-dependent nonlinear responses have been observed and investigated. In addition, a highly stable femtosecond fiber laser with signal-to-noise ratio up to 70.7 dB and central wavelength of 1567.3 nm has been delivered. The study may provide some valuable design guidelines for the development of ultrafast, broadband nonlinear optical modulators, and open new avenues toward advanced photonic devices based on MXenes.