We assessed the eff ects of arbuscular mycorrhizal fungi(AMF)Rhizophagus irregularis inoculation on salt stress tolerance in roots of the drought-tolerant plant Elaeagnus angustifolia.We studied a plant growth index,s...We assessed the eff ects of arbuscular mycorrhizal fungi(AMF)Rhizophagus irregularis inoculation on salt stress tolerance in roots of the drought-tolerant plant Elaeagnus angustifolia.We studied a plant growth index,spore density and hyphal length density of AMF,the Na+contents and ultrastructure of root cells,as well as rhizosphere soil enzyme activities of mycorrhizal and non-mycorrhizal E.angustifolia seedlings under diff erent salt stress.Under salt stress,growth of E.angustifolia with mycorrhizal inoculation was higher than that of non-inoculated treatments.The spore density and hyphal length density decreased signifi cantly under salt stress in rhizosphere soil of mycorrhizal E.angustifolia seedlings(p<0.05).The root cells of E.angustifolia seedlings inoculated with R.irregularis at 300 mmol L−1 salt had more organelles,greater integrity,and lower root Na+contents than those of non-inoculated seedlings.In addition,the results showed notably higher activities of catalase,phosphatase,urease and saccharase in rhizosphere soil of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings.Therefore,AMF inoculation could enhance salt stress tolerance in roots of E.angustifolia.展开更多
The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventi...The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.展开更多
基金This work was supported by Key Laboratory of Microbiology,College of Heilongjiang Province.We would also like to thank Elizabeth Tokarz at the Yale University for her assistance with English language and grammatical editing of the manuscript.
文摘We assessed the eff ects of arbuscular mycorrhizal fungi(AMF)Rhizophagus irregularis inoculation on salt stress tolerance in roots of the drought-tolerant plant Elaeagnus angustifolia.We studied a plant growth index,spore density and hyphal length density of AMF,the Na+contents and ultrastructure of root cells,as well as rhizosphere soil enzyme activities of mycorrhizal and non-mycorrhizal E.angustifolia seedlings under diff erent salt stress.Under salt stress,growth of E.angustifolia with mycorrhizal inoculation was higher than that of non-inoculated treatments.The spore density and hyphal length density decreased signifi cantly under salt stress in rhizosphere soil of mycorrhizal E.angustifolia seedlings(p<0.05).The root cells of E.angustifolia seedlings inoculated with R.irregularis at 300 mmol L−1 salt had more organelles,greater integrity,and lower root Na+contents than those of non-inoculated seedlings.In addition,the results showed notably higher activities of catalase,phosphatase,urease and saccharase in rhizosphere soil of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings.Therefore,AMF inoculation could enhance salt stress tolerance in roots of E.angustifolia.
基金funded by National Natural Science Foundation of China(82171004,82071170&81701016)Zhejiang Provincial Science and Technology Project for Public Welfare(LY21H180006&LGF20H140002)+2 种基金Key Technological Innovation Projects of Wenzhou(ZY2019009)Wenzhou Public Welfare Science and Technology Project(Y20190099&Y2020118)Wenzhou Medical University Basic Scientific Research Operating Expenses(KYYW201905).
文摘The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.