The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau...The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.展开更多
文摘The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.