期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
StripeRust-Pocket:A Mobile-Based Deep Learning Application for Efficient Disease Severity Assessment of Wheat Stripe Rust
1
作者 Weizhen Liu Yuxi Chen +6 位作者 Zhaoxin Lu Xiaoyu Lu Ze Wu ziyao zheng Yongqiang Suo Caixia Lan Xiaohui Yuan 《Plant Phenomics》 SCIE EI 2024年第3期771-786,共16页
Wheat stripe rust poses a marked threat to global wheat production.Accurate and effective disease severity assessments are crucial for disease resistance breeding and timely management of field diseases.In this study,... Wheat stripe rust poses a marked threat to global wheat production.Accurate and effective disease severity assessments are crucial for disease resistance breeding and timely management of field diseases.In this study,we propose a practical solution using mobile-based deep learning and model-assisted labeling.StripeRust-Pocket,a user-friendly mobile application developed based on deep learning models,accurately quantifies disease severity in wheat stripe rust leaf images,even under complex backgrounds.Additionally,StripeRust-Pocket facilitates image acquisition,result storage,organization,and sharing.The underlying model employed by StripeRust-Pocket,called StripeRustNet,is a balanced lightweight 2-stage model.The first stage utilizes MobileNetV2-DeepLabV3+for leaf segmentation,followed by ResNet50-DeepLabV3+in the second stage for lesion segmentation.Disease severity is estimated by calculating the ratio of the lesion pixel area to the leaf pixel area.StripeRustNet achieves 98.65%mean intersection over union(MIoU)for leaf segmentation and 86.08%MIoU for lesion segmentation.Validation using an additional 100 field images demonstrated a mean correlation of over 0.964 with 3 expert visual scores.To address the challenges in manual labeling,we introduce a 2-stage labeling pipeline that combines model-assisted labeling,manual correction,and spatial complementarity.We apply this pipeline to our self-collected dataset,reducing the annotation time from 20 min to 3 min per image.Our method provides an efficient and practical solution for wheat stripe rust severity assessments,empowering wheat breeders and pathologists to implement timely disease management.It also demonstrates how to address the"last mile"challenge of applying computer vision technology to plant phenomics. 展开更多
关键词 application learning pocket deep assessment disease efficient mobile-based severity striperust
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部