In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop ...In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop flow”,“jet flow”,“squeeze flow”,and“co-flow”,have been obtained for different flow velocity ratios,channel diameter ratios,density ratios,viscosity ratios,and surface tension.The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly,and the associated droplet generation process has been critically discussed considering the related frequency,diameter,and pinch-off length.In particular,it is shown that the larger the flow velocity ratio,the smaller the diameter of generated droplets and the shorter the pinch-off length.The pinch-off length of a droplet is influenced by the channel diameter ratio and density ratio.The changes in viscosity ratio have a negligible influence on the droplet generation pinching frequency.With an increase in surface tension,the frequency of generation and pinch-off length of droplets decrease,but for small surface tension the generation diameter of droplet increases.展开更多
The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central ...The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central Iran and Oman)and the orogenic belts between them,has long been the frontier in Earth science research.The Cryogenian and Ediacaran strata are extensively distributed in these blocks.Specifically,relatively complete Cryogenian and Ediacaran successions have been discovered in Oman,Indian,Yangtze,and Tarim blocks,while only the Ediacaran successions have been reported in Iran,the South Qiangtang,Central Qilian,Alxa,and North China blocks.Based on previous studies together with the integration of new materials and advancement obtained through the Second Tibetan Plateau Scientific Expedition and Research,this review aims to synthesize a correlative stratigraphic framework of the representative Cryogenian and Ediacaran sequences from the Qinghai-Tibetan Plateau and its surrounding areas.Furthermore,the Cryogenian and Ediacaran biotas and major geological events in these areas are comprehensively discussed in aspects of current research status.The results indicate that,in general,Ediacaran fossils of each area exhibit distinct features in preservation and assemblage composition,but the typical late Ediacaran fossils Cloudina and Shaanxilithes have been reported from most of these areas.In addition to the two global Cryogenian glaciations,late Ediacaran glaciogenic deposits are extensively recorded in the areas within and around the northern QinghaiTibetan Plateau(including the North China,Alxa,Central Qilian,Olongbuluk,and Tarim blocks,and the North Qilian Accretionary Belt),as well as central and southern Iran.However,further research is required to determine the age,distribution,and origin of these late Ediacaran glaciogenic deposits.Meanwhile,the middle Ediacaran DOUNCE/Shuram Excursion is widely documented in the Qinghai-Tibetan Plateau and its surrounding areas.The available data show that,after the break-up of the Rodinia supercontinent,most of the continental blocks in the areas were located along the northern margin of East Gondwana and a few(such as North China)were located between the Gondwana and Laurentia.In general,the paleogeographic evolution of most of these blocks during the Cryogenian and Ediacaran remains disputatious,necessitating further research to resolve the controversies surrounding their paleogeographic reconstruction models during this critical time interval.展开更多
The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orog...The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orogenic belts constitute the main part of the Qinghai-Tibetan Plateau.During the Cambrian Period,most of these cratons and blocks were on the northwestern periphery of Gondwana,and were associated with the surrounding blocks,e.g.Arabian,Central Iran,Afghanistan,Tarim,Alxa,North China,South China and Sibumasu through the Proto-Tethys Ocean.The Cambrian stratigraphic sequences on these stable blocks are composed of mixed siliciclastic and carbonate rocks deposited in the shallow-water marine environments,and contain the trilobite assemblages of shelf facies.The Cambrian stratigraphic sequences in the Qilian tectonic belts,however,are characterized by the intermediate-basic igneous rocks and silicates formed in the Proto-Tethys Ocean,and contain the trilobite assemblages of deep-water slope facies.Combining with previous data,field observations and newly discovered fossils through funding by the Second Tibetan Plateau Scientific Expedition and Research,the general characteristics of the Cambrian strata in different tectonic units of the Qinghai-Tibetan Plateau and its surrounding areas have been summarized in this paper.Furthermore,efforts have been made to subdivide and correlate the Cambrian strata across these areas by utilizing available biostratigraphic and geochronological data.As a result,a comprehensive litho-and biostratigraphy chart has been compiled.Finally,from the biogeographic perspective,this paper also provides a brief overview of the Cambrian paleogeographical reconstruction of the major tectonic blocks,and discusses the problems associated with the evolution of the ProtoTethys tectonic belt.展开更多
The three-dimensional(3D)morphology,anatomy,and in-situ chemical composition analysis of fossils are crucial for systematic paleontology and determining their phylogenetic positions.Scanning electron microscopy(SEM)co...The three-dimensional(3D)morphology,anatomy,and in-situ chemical composition analysis of fossils are crucial for systematic paleontology and determining their phylogenetic positions.Scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDS),offers valuable structural and chemical information for the analysis of fossils.However,its primary limitation is the restriction to two-dimensional surface data,which limits the exploration of fossils’3D complexities.Conversely,3D X-ray microscopy(3D-XRM),also known as a novel form of micro-computed tomography(micro-CT)facilitates the non-destructive 3D reconstruction of fossil specimens.Nevertheless,it lacks the capability to provide in-situ compositional data.Acknowledging the constraints inherent in these individual techniques,and in response to the evolving requirements of paleontological research,this study introduces an integrated approach that combines 3D-XRM with EDS-coupled focused ion beam scanning electron microscopy(FIB-SEM).This innovative strategy is designed to synergize the advantages of both techniques,thereby addressing challenges that conventional methods cannot.It enables the rapid identification of regions of interest(ROI)within fossil specimens at micrometer resolution.Subsequently,this method collects detailed data on both 3D structures and chemical compositions at the nanometer scale for the identified ROI.This integrated approach represents a significant advancement in paleontological and geological research methodologies,promising to meet the increasing demands of these fields.展开更多
A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,...A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,yields predominantly soft-bodied fossils,including arthropods,brachiopods,priapulids,lobopods and some problematic taxa,with arthropods being the most dominant group.Preservation and composition of the fossil assemblage are very similar to the typical Chengjiang biota,which is preserved in the middle Yu’anshan Formation in the large area of eastern Yunnan.The associated trilobites demonstrate that the soft-bodied fossil assemblage belongs to the late Qiongzhusian in age(Stage 3,Cambrian),suggesting that the Hongjingshao Formation is probably a diachronous lithostratigraphic unit ranging from the upper Qiongzhusian to the lower Canglangpuan stages in eastern Yunnan.The fossil assemblage from the Xiazhuang area fills up the missing link between the typical older Chengjiang biota and the younger Malong and Guanshan biotas,making eastern Yunnan a unique area in the world to reveal the early evolutionary history of animals and palaeocommunity dynamics during the‘‘Cambrian explosion’’.展开更多
In December 2020, Chang’E-5(CE-5), China’s first lunar sample return mission, successfully collected samples totaling 1731 g from the northern Oceanus Procellarum. The landing site was located in a young mare plain,...In December 2020, Chang’E-5(CE-5), China’s first lunar sample return mission, successfully collected samples totaling 1731 g from the northern Oceanus Procellarum. The landing site was located in a young mare plain, a great distance from those of Apollo and Luna missions. These young mare basalts bear critical scientific significance as they could shed light on the nature of the lunar interior(composition and structure) as well as the recent volcanism on the Moon. In this article, we investigated a CE-5 basalt sample(CE5 C0000 YJYX065) using a combination of state-of-art techniques, including high resolution X-ray tomographic microscopy(HR-XTM), energy dispersive X-ray spectroscopy(EDS)-based scanning electron microscope(SEM), and electron probe microanalysis(EPMA) to reveal its 3 D petrology and minerology.Our results show that this sample has a fine-to medium-grained subophitic texture, with sparse olivine phenocrysts setting in the groundmass of pyroxene, plagioclase, ilmenite and trace amounts of other phases. It has an extremely high ilmenite modal abundance(17.8 vol%) and contains a significant amount(0.5 vol%) of Ca-phosphate grains. The mineral chemistry is in excellent agreement with that of Apollo and Luna high-Ti basalts. The major phase pyroxenes also display strong chemical zoning with compositions following the trends observed in Apollo high-Ti basalts. Based on current data, we came to the conclusion that CE5 C0000 YJYX065 is a high-Ti mare basalt with a rare earth element(REE) enriched signature. This provides a rigid ground-truth for the geological context at the CE-5 landing site and clarifies the ambiguity inferred from remote sensing surveys.展开更多
基金funded by University Natural Science Research Project of Anhui Province,Grant Numbers (KJ2020A0826,2022AH051885,2022AH051891,2022AH030160,62303231)Intelligent Detection Research Team Funds for the Anhui Institute of Information Technology,Grant Number (AXG2023_kjc_5004).
文摘In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop flow”,“jet flow”,“squeeze flow”,and“co-flow”,have been obtained for different flow velocity ratios,channel diameter ratios,density ratios,viscosity ratios,and surface tension.The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly,and the associated droplet generation process has been critically discussed considering the related frequency,diameter,and pinch-off length.In particular,it is shown that the larger the flow velocity ratio,the smaller the diameter of generated droplets and the shorter the pinch-off length.The pinch-off length of a droplet is influenced by the channel diameter ratio and density ratio.The changes in viscosity ratio have a negligible influence on the droplet generation pinching frequency.With an increase in surface tension,the frequency of generation and pinch-off length of droplets decrease,but for small surface tension the generation diameter of droplet increases.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0706)the National Natural Science Foundation of China(Grant No.41921002)。
文摘The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central Iran and Oman)and the orogenic belts between them,has long been the frontier in Earth science research.The Cryogenian and Ediacaran strata are extensively distributed in these blocks.Specifically,relatively complete Cryogenian and Ediacaran successions have been discovered in Oman,Indian,Yangtze,and Tarim blocks,while only the Ediacaran successions have been reported in Iran,the South Qiangtang,Central Qilian,Alxa,and North China blocks.Based on previous studies together with the integration of new materials and advancement obtained through the Second Tibetan Plateau Scientific Expedition and Research,this review aims to synthesize a correlative stratigraphic framework of the representative Cryogenian and Ediacaran sequences from the Qinghai-Tibetan Plateau and its surrounding areas.Furthermore,the Cryogenian and Ediacaran biotas and major geological events in these areas are comprehensively discussed in aspects of current research status.The results indicate that,in general,Ediacaran fossils of each area exhibit distinct features in preservation and assemblage composition,but the typical late Ediacaran fossils Cloudina and Shaanxilithes have been reported from most of these areas.In addition to the two global Cryogenian glaciations,late Ediacaran glaciogenic deposits are extensively recorded in the areas within and around the northern QinghaiTibetan Plateau(including the North China,Alxa,Central Qilian,Olongbuluk,and Tarim blocks,and the North Qilian Accretionary Belt),as well as central and southern Iran.However,further research is required to determine the age,distribution,and origin of these late Ediacaran glaciogenic deposits.Meanwhile,the middle Ediacaran DOUNCE/Shuram Excursion is widely documented in the Qinghai-Tibetan Plateau and its surrounding areas.The available data show that,after the break-up of the Rodinia supercontinent,most of the continental blocks in the areas were located along the northern margin of East Gondwana and a few(such as North China)were located between the Gondwana and Laurentia.In general,the paleogeographic evolution of most of these blocks during the Cryogenian and Ediacaran remains disputatious,necessitating further research to resolve the controversies surrounding their paleogeographic reconstruction models during this critical time interval.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0706)the National Natural Science Foundation of China(Grant No.41921002)。
文摘The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orogenic belts constitute the main part of the Qinghai-Tibetan Plateau.During the Cambrian Period,most of these cratons and blocks were on the northwestern periphery of Gondwana,and were associated with the surrounding blocks,e.g.Arabian,Central Iran,Afghanistan,Tarim,Alxa,North China,South China and Sibumasu through the Proto-Tethys Ocean.The Cambrian stratigraphic sequences on these stable blocks are composed of mixed siliciclastic and carbonate rocks deposited in the shallow-water marine environments,and contain the trilobite assemblages of shelf facies.The Cambrian stratigraphic sequences in the Qilian tectonic belts,however,are characterized by the intermediate-basic igneous rocks and silicates formed in the Proto-Tethys Ocean,and contain the trilobite assemblages of deep-water slope facies.Combining with previous data,field observations and newly discovered fossils through funding by the Second Tibetan Plateau Scientific Expedition and Research,the general characteristics of the Cambrian strata in different tectonic units of the Qinghai-Tibetan Plateau and its surrounding areas have been summarized in this paper.Furthermore,efforts have been made to subdivide and correlate the Cambrian strata across these areas by utilizing available biostratigraphic and geochronological data.As a result,a comprehensive litho-and biostratigraphy chart has been compiled.Finally,from the biogeographic perspective,this paper also provides a brief overview of the Cambrian paleogeographical reconstruction of the major tectonic blocks,and discusses the problems associated with the evolution of the ProtoTethys tectonic belt.
基金founded by the National Natural Science Foundation of China(No.42022010)the National Key Research and Development Program of China(No.2022YFF0800100)the CAS Interdisciplinary Innovation Team(No.JCTD-2020-18)and the Youth Innovation Promotion Association.
文摘The three-dimensional(3D)morphology,anatomy,and in-situ chemical composition analysis of fossils are crucial for systematic paleontology and determining their phylogenetic positions.Scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDS),offers valuable structural and chemical information for the analysis of fossils.However,its primary limitation is the restriction to two-dimensional surface data,which limits the exploration of fossils’3D complexities.Conversely,3D X-ray microscopy(3D-XRM),also known as a novel form of micro-computed tomography(micro-CT)facilitates the non-destructive 3D reconstruction of fossil specimens.Nevertheless,it lacks the capability to provide in-situ compositional data.Acknowledging the constraints inherent in these individual techniques,and in response to the evolving requirements of paleontological research,this study introduces an integrated approach that combines 3D-XRM with EDS-coupled focused ion beam scanning electron microscopy(FIB-SEM).This innovative strategy is designed to synergize the advantages of both techniques,thereby addressing challenges that conventional methods cannot.It enables the rapid identification of regions of interest(ROI)within fossil specimens at micrometer resolution.Subsequently,this method collects detailed data on both 3D structures and chemical compositions at the nanometer scale for the identified ROI.This integrated approach represents a significant advancement in paleontological and geological research methodologies,promising to meet the increasing demands of these fields.
基金supported by the Program of Chinese Academy of Sciences(KZZD-EW-02-2)the National Basic Research Program of China(2013CB835006)+2 种基金the National NaturalScience Foundation of China(41002002,41372021,J1210006)the Natural Science Foundation of Jiangsu Province(BK2012893)the National Science and Technology Major Project(2011ZX05008)
文摘A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,yields predominantly soft-bodied fossils,including arthropods,brachiopods,priapulids,lobopods and some problematic taxa,with arthropods being the most dominant group.Preservation and composition of the fossil assemblage are very similar to the typical Chengjiang biota,which is preserved in the middle Yu’anshan Formation in the large area of eastern Yunnan.The associated trilobites demonstrate that the soft-bodied fossil assemblage belongs to the late Qiongzhusian in age(Stage 3,Cambrian),suggesting that the Hongjingshao Formation is probably a diachronous lithostratigraphic unit ranging from the upper Qiongzhusian to the lower Canglangpuan stages in eastern Yunnan.The fossil assemblage from the Xiazhuang area fills up the missing link between the typical older Chengjiang biota and the younger Malong and Guanshan biotas,making eastern Yunnan a unique area in the world to reveal the early evolutionary history of animals and palaeocommunity dynamics during the‘‘Cambrian explosion’’.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 41000000)the Civil Aerospace Pre-research Projects (D020202 and D020302)+2 种基金the National Natural Science Foundation of China (41773059, 41873076, 41803051, 41973060, 42073060, and 42173044)the National Key Research and Development Program of China (2021YFA0716100)the Minor Planet Foundation of China
文摘In December 2020, Chang’E-5(CE-5), China’s first lunar sample return mission, successfully collected samples totaling 1731 g from the northern Oceanus Procellarum. The landing site was located in a young mare plain, a great distance from those of Apollo and Luna missions. These young mare basalts bear critical scientific significance as they could shed light on the nature of the lunar interior(composition and structure) as well as the recent volcanism on the Moon. In this article, we investigated a CE-5 basalt sample(CE5 C0000 YJYX065) using a combination of state-of-art techniques, including high resolution X-ray tomographic microscopy(HR-XTM), energy dispersive X-ray spectroscopy(EDS)-based scanning electron microscope(SEM), and electron probe microanalysis(EPMA) to reveal its 3 D petrology and minerology.Our results show that this sample has a fine-to medium-grained subophitic texture, with sparse olivine phenocrysts setting in the groundmass of pyroxene, plagioclase, ilmenite and trace amounts of other phases. It has an extremely high ilmenite modal abundance(17.8 vol%) and contains a significant amount(0.5 vol%) of Ca-phosphate grains. The mineral chemistry is in excellent agreement with that of Apollo and Luna high-Ti basalts. The major phase pyroxenes also display strong chemical zoning with compositions following the trends observed in Apollo high-Ti basalts. Based on current data, we came to the conclusion that CE5 C0000 YJYX065 is a high-Ti mare basalt with a rare earth element(REE) enriched signature. This provides a rigid ground-truth for the geological context at the CE-5 landing site and clarifies the ambiguity inferred from remote sensing surveys.