Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN thr...As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN through depth profiling using 405-,532-,and 638-nm wavelength lasers.The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution.Based on the shift of the E2 H mode of the GaN epitaxial layer,the interfacial stress for different types of GaN is characterized and calculated.The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate.Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.展开更多
Raman spectroscopy is a type of inelastic scattering spectroscopy that is widely used in determining and analyzing molecular structure.It also has a number of practical applications in evaluating food safety,medicine,...Raman spectroscopy is a type of inelastic scattering spectroscopy that is widely used in determining and analyzing molecular structure.It also has a number of practical applications in evaluating food safety,medicine,and forensics.The Raman spectral signal is weak,but the development of the surface-enhanced Raman scattering(SERS)technique has overcome this problem and led to further developments in Raman spectroscopy.This paper describes a fundamental study of the use of focused ion beam(FIB)direct writing for preparing gold substrates for SERS.Molecular dynamics and Monte Carlo simulation methods are used to investigate the damage induced by gallium ion implantation of a gold substrate.Based on characterization by x-ray photoelectron spectroscopy(XPS)and scanning electron microscopy,the mechanism by which ion implantation and annealing influence the damage induced by a gallium FIB is analyzed.After annealing at 350 XC,a mixture of metallic gallium,its oxide Ga2O3 conforming to the stoichiometric ratio,and its sub-stable oxide(Ga2Ox)in sub-stoichiometric ratio precipitated on the surface are detected by XPS.Annealing treatment can effectively reduce the effect of gallium ion implantation on a SERS substrate fabricated by FIB direct writing.展开更多
Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' pote...Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' potential in the field of tribology and their application in ultra-charge/discharge devices. In this paper, a novel surface-enhanced Raman scattering technique that involves coating the sample with nanoscopic gold particles is proposed to characterize the NDs after different annealing treatments. Conventional Raman and surfaceenhanced Raman spectra were obtained, and the changes of peak parameters as the function of annealing temperature were evaluated. It was found that the widths of the D and the G peaks decreased with increasing annealing temperature, reflecting an improved order in the sp^2-hybridized carbon during the transformation from NDs to carbon onions. After annealing at 1700 ℃, the sp^2?carbon was highly ordered, indicating desirable electrical conductivity and lubricity. With increasing annealing temperature, the D peak showed a blue shift of almost30 cm^(-1), while the G peak merely shifted by 5 cm^(-1). For annealing temperatures above 1100 ℃, an increase of intensity ratio ID/IGwas observed. Compared to the uncoated area, red shifts of 0.5-2 cm^(-1) and of 5-9 cm^(-1) for the G and D peaks, respectively, were detected for the gold-coated area, which was due to the coupling of the plasmons and the phonons of the samples.展开更多
The development of new kinds of semiconductor material is a very attractive topic of scientific research and appliations.Graphene is considered as one of the most impressive 2D materials for many applications,like gra...The development of new kinds of semiconductor material is a very attractive topic of scientific research and appliations.Graphene is considered as one of the most impressive 2D materials for many applications,like graphene-reinforced metal matrix nanocomposites.1 Widebandgap(WBG)semiconductors have received widespread attention in recent years because of their superior physical properties such as large band gap,high carrier mobility,and high thermal conductivity.Represented by silicon carbide(SiC)and gallium nitride(GaN),WBG semiconductor materials,therefore,can be operated in extreme working environments or conditions such as high temperature,high frequency,and high power.展开更多
To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with...To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with 2 ke V energy implanted into silicon with dislocation structures were studied via MD simulation. Results show that the dislocation structures and their positions in the sample affect the helium ion retention rate. The analysis on the three-dimensional distribution of helium ions show that the implanted helium ions tend to accumulate near the dislocation structures. Raman spectroscopy results show that the silicon substrate surface after helium ion implantation displayed tensile stress as indicated by the blue shift of Raman peaks.展开更多
Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwri...Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.展开更多
As a promisingmaterial for quantumtechnology,silicon carbide(SiC)has attracted great interest inmaterials science.Carbon vacancy is a dominant defect in 4H-SiC.Thus,understanding the properties of this defect is criti...As a promisingmaterial for quantumtechnology,silicon carbide(SiC)has attracted great interest inmaterials science.Carbon vacancy is a dominant defect in 4H-SiC.Thus,understanding the properties of this defect is critical to its application,and the atomic and electronic structures of the defects needs to be identified.In this study,density functional theorywas used to characterize the carbon vacancy defects in hexagonal(h)and cubic(k)lattice sites.The zero-phonon line energies,hyperfine tensors,and formation energies of carbon vacancies with different charge states(2−,−,0,+and 2+)in different supercells(72,128,400 and 576 atoms)were calculated using standard Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof methods.Results show that the zero-phonon line energies of carbon vacancy defects are much lower than those of divacancy defects,indicating that the former is more likely to reach the excited state than the latter.The hyperfine tensors of VC+(h)and VC+(k)were calculated.Comparison of the calculated hyperfine tensor with the experimental results indicates the existence of carbon vacancies in SiC lattice.The calculation of formation energy shows that the most stable carbon vacancy defects in the material are VC 2+(k),VC+(k),VC(k),VC−(k)and VC 2−(k)as the electronic chemical potential increases.展开更多
Ultralow concentration molecular detection is critical in various fields,e.g.,food safety,environmental monitoring,and dis-ease diagnosis.Highly sensitive surface-enhanced Raman scattering(SERS)based on ultra-wettable...Ultralow concentration molecular detection is critical in various fields,e.g.,food safety,environmental monitoring,and dis-ease diagnosis.Highly sensitive surface-enhanced Raman scattering(SERS)based on ultra-wettable surfaces has attracted attention due to its unique ability to detect trace molecules.However,the complexity and cost associated with the preparation of traditional SERS substrates restrict their practical application.Thus,an efficient SERS substrate preparation with high sensitivity,a simplified process,and controllable cost is required.In this study,a superhydrophobic–hydrophilic patterned Cu@Ag composite SERS substrate was fabricated using femtosecond laser processing technology combined with silver plating and surface modification treatment.By inducing periodic stripe structures through femtosecond laser processing,the developed substrate achieves uniform distribution hotspots.Using the surface wettability difference,the object to be measured can be confined in the hydrophilic region and the edge of the hydrophilic region,where the analyte is enriched by the coffee ring effect,can be quickly located by surface morphology difference of micro-nanostructures;thus,greatly improving detec-tion efficiency.The fabricated SERS substrate can detect Rhodamine 6G(R6G)at an extraordinarily low concentration of 10^(−15)mol/L,corresponding to an enhancement factor of 1.53×10^(8).This substrate has an ultralow detection limit,incurs low processing costs and is simple to prepare;thus,the substrate has significant application potential in the trace analysis field.展开更多
As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum com...As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing.Simultaneously,the new direct femtosecond(fs)laser writing technology has been successfully applied to preparing V_(Si)s in SiC.In this study,6H-SiC,which has been less studied,was used as the processed material.V_(Si) center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser.The surface was characterized by white light microscopy,atomic force microscopy,and confocal photoluminescence(PL)/Raman spectrometry.The effect of fs laser energy,vector polarization,pulse number,and repetition rate on 6H-SiC V_(Si) defect preparation was analyzed by measuring the V_(Si) PL signal at 785-nm laser excitation.The results show that fs laser energy and pulse number greatly influence the preparation of the color center,which plays a key role in optimizing the yield of V_(Si)s prepared by fs laser nanomachining.展开更多
Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical ...Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.展开更多
Deformation behavior at grain levels greatly affects the machining characteristics of crystalline materials.In the present work,we investigate the influence of material anisotropy on ultra-precision diamond cutting of...Deformation behavior at grain levels greatly affects the machining characteristics of crystalline materials.In the present work,we investigate the influence of material anisotropy on ultra-precision diamond cutting of single crystalline and polycrystalline copper by experiments and crystal plasticity finite element simulations.Specifically,diamond turning and in situ SEM orthogonal cutting experiments are carried out to provide direct experimental evidence of the material anisotropy-dependent cutting results in terms of machined surface morphology and chip profile.Corresponding numerical simulations with the analysis of built stress further validate experimental results and reveal the mechanisms governing the material anisotropy influence.The above findings provide insight into the fabrication of ultra-smooth surfaces of polycrystalline metals by ultraprecision diamond turning.展开更多
Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defec...Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
基金the National Natural Science Foundation of China(Grant Nos.51575389 and 51761135106)the National Key Research and Development Program of China(Grant No.2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the‘111’Project of the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘As an important wide-bandgap semiconductor,gallium nitride(GaN)has attracted considerable attention.This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN,n-type GaN,and p-type GaN through depth profiling using 405-,532-,and 638-nm wavelength lasers.The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution.Based on the shift of the E2 H mode of the GaN epitaxial layer,the interfacial stress for different types of GaN is characterized and calculated.The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate.Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.
基金The study is supported by the National Natural Science Foundation of China(Grant No.51575389)the State Key Laboratory of Precision Measurement Technology and Instruments(Pilt1705)。
文摘Raman spectroscopy is a type of inelastic scattering spectroscopy that is widely used in determining and analyzing molecular structure.It also has a number of practical applications in evaluating food safety,medicine,and forensics.The Raman spectral signal is weak,but the development of the surface-enhanced Raman scattering(SERS)technique has overcome this problem and led to further developments in Raman spectroscopy.This paper describes a fundamental study of the use of focused ion beam(FIB)direct writing for preparing gold substrates for SERS.Molecular dynamics and Monte Carlo simulation methods are used to investigate the damage induced by gallium ion implantation of a gold substrate.Based on characterization by x-ray photoelectron spectroscopy(XPS)and scanning electron microscopy,the mechanism by which ion implantation and annealing influence the damage induced by a gallium FIB is analyzed.After annealing at 350 XC,a mixture of metallic gallium,its oxide Ga2O3 conforming to the stoichiometric ratio,and its sub-stable oxide(Ga2Ox)in sub-stoichiometric ratio precipitated on the surface are detected by XPS.Annealing treatment can effectively reduce the effect of gallium ion implantation on a SERS substrate fabricated by FIB direct writing.
基金supported by National Natural Science Foundation of China (No. 51575389, 51761135106, 51511130074)National Key Research and Development Program of China (2016YFB1102203)State key laboratory of precision measuring technology and instruments (Pilt1705)
文摘Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' potential in the field of tribology and their application in ultra-charge/discharge devices. In this paper, a novel surface-enhanced Raman scattering technique that involves coating the sample with nanoscopic gold particles is proposed to characterize the NDs after different annealing treatments. Conventional Raman and surfaceenhanced Raman spectra were obtained, and the changes of peak parameters as the function of annealing temperature were evaluated. It was found that the widths of the D and the G peaks decreased with increasing annealing temperature, reflecting an improved order in the sp^2-hybridized carbon during the transformation from NDs to carbon onions. After annealing at 1700 ℃, the sp^2?carbon was highly ordered, indicating desirable electrical conductivity and lubricity. With increasing annealing temperature, the D peak showed a blue shift of almost30 cm^(-1), while the G peak merely shifted by 5 cm^(-1). For annealing temperatures above 1100 ℃, an increase of intensity ratio ID/IGwas observed. Compared to the uncoated area, red shifts of 0.5-2 cm^(-1) and of 5-9 cm^(-1) for the G and D peaks, respectively, were detected for the gold-coated area, which was due to the coupling of the plasmons and the phonons of the samples.
文摘The development of new kinds of semiconductor material is a very attractive topic of scientific research and appliations.Graphene is considered as one of the most impressive 2D materials for many applications,like graphene-reinforced metal matrix nanocomposites.1 Widebandgap(WBG)semiconductors have received widespread attention in recent years because of their superior physical properties such as large band gap,high carrier mobility,and high thermal conductivity.Represented by silicon carbide(SiC)and gallium nitride(GaN),WBG semiconductor materials,therefore,can be operated in extreme working environments or conditions such as high temperature,high frequency,and high power.
基金supported by the National Natural Science Foundation of China (No. 51575389, 51761135106)the National Key Research and Development Program of China (2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measurement Technology and Instruments (Plit1705)the “111 Project” by the State Administration of Foreign Experts Affairs and the Ministry of China (Grant No. B07014)。
文摘To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with 2 ke V energy implanted into silicon with dislocation structures were studied via MD simulation. Results show that the dislocation structures and their positions in the sample affect the helium ion retention rate. The analysis on the three-dimensional distribution of helium ions show that the implanted helium ions tend to accumulate near the dislocation structures. Raman spectroscopy results show that the silicon substrate surface after helium ion implantation displayed tensile stress as indicated by the blue shift of Raman peaks.
基金This work was supported by the National Natural Science Foundation of China(No.51575389,51761135106)the National Key Research and Development Program of China(2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.
基金The study is supported by the National Natural Science Foundation of China(No.51575389,51761135106)the National Key Research and Development Program of China(No.2016YFB1102203)+2 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the“111”Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(No.B07014)Computational research performed at the University of Helsinki was supported by the EU Project M4F(Project ID:755039)。
文摘As a promisingmaterial for quantumtechnology,silicon carbide(SiC)has attracted great interest inmaterials science.Carbon vacancy is a dominant defect in 4H-SiC.Thus,understanding the properties of this defect is critical to its application,and the atomic and electronic structures of the defects needs to be identified.In this study,density functional theorywas used to characterize the carbon vacancy defects in hexagonal(h)and cubic(k)lattice sites.The zero-phonon line energies,hyperfine tensors,and formation energies of carbon vacancies with different charge states(2−,−,0,+and 2+)in different supercells(72,128,400 and 576 atoms)were calculated using standard Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof methods.Results show that the zero-phonon line energies of carbon vacancy defects are much lower than those of divacancy defects,indicating that the former is more likely to reach the excited state than the latter.The hyperfine tensors of VC+(h)and VC+(k)were calculated.Comparison of the calculated hyperfine tensor with the experimental results indicates the existence of carbon vacancies in SiC lattice.The calculation of formation energy shows that the most stable carbon vacancy defects in the material are VC 2+(k),VC+(k),VC(k),VC−(k)and VC 2−(k)as the electronic chemical potential increases.
基金support from National Natural Science Foundation of China(Nos.52035009,51761135106)2020 Mobility Programme of the Sino-German Center for Research Promotion(M-0396)the'111'project by the State Administration Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Ultralow concentration molecular detection is critical in various fields,e.g.,food safety,environmental monitoring,and dis-ease diagnosis.Highly sensitive surface-enhanced Raman scattering(SERS)based on ultra-wettable surfaces has attracted attention due to its unique ability to detect trace molecules.However,the complexity and cost associated with the preparation of traditional SERS substrates restrict their practical application.Thus,an efficient SERS substrate preparation with high sensitivity,a simplified process,and controllable cost is required.In this study,a superhydrophobic–hydrophilic patterned Cu@Ag composite SERS substrate was fabricated using femtosecond laser processing technology combined with silver plating and surface modification treatment.By inducing periodic stripe structures through femtosecond laser processing,the developed substrate achieves uniform distribution hotspots.Using the surface wettability difference,the object to be measured can be confined in the hydrophilic region and the edge of the hydrophilic region,where the analyte is enriched by the coffee ring effect,can be quickly located by surface morphology difference of micro-nanostructures;thus,greatly improving detec-tion efficiency.The fabricated SERS substrate can detect Rhodamine 6G(R6G)at an extraordinarily low concentration of 10^(−15)mol/L,corresponding to an enhancement factor of 1.53×10^(8).This substrate has an ultralow detection limit,incurs low processing costs and is simple to prepare;thus,the substrate has significant application potential in the trace analysis field.
基金supported by the‘111’project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘As a single photon source,silicon vacancy(V_(Si))centers in wide bandgap semiconductor silicon carbide(SiC)are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing.Simultaneously,the new direct femtosecond(fs)laser writing technology has been successfully applied to preparing V_(Si)s in SiC.In this study,6H-SiC,which has been less studied,was used as the processed material.V_(Si) center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser.The surface was characterized by white light microscopy,atomic force microscopy,and confocal photoluminescence(PL)/Raman spectrometry.The effect of fs laser energy,vector polarization,pulse number,and repetition rate on 6H-SiC V_(Si) defect preparation was analyzed by measuring the V_(Si) PL signal at 785-nm laser excitation.The results show that fs laser energy and pulse number greatly influence the preparation of the color center,which plays a key role in optimizing the yield of V_(Si)s prepared by fs laser nanomachining.
基金supported by the National Natural Science Foundation of China(21872104,51908408,21872163,and 22072090)the National Key Research and Development Program of China(2017YFB0602200,2020YFA0211000,and 2020YFA0211003)+3 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD13-5008)Tianjin Science and Technology Planning Project(21ZYQCSY00050)the support from the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the support from the Tencent Foundation through the XPLORER PRIZE。
文摘Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.
基金The authors greatly acknowledge support from the Science Challenge Project(Nos.TZ2018006-0201-02 and TZ2018006-0205-02)the Fundamental Research Funds for the Central Universities.
文摘Deformation behavior at grain levels greatly affects the machining characteristics of crystalline materials.In the present work,we investigate the influence of material anisotropy on ultra-precision diamond cutting of single crystalline and polycrystalline copper by experiments and crystal plasticity finite element simulations.Specifically,diamond turning and in situ SEM orthogonal cutting experiments are carried out to provide direct experimental evidence of the material anisotropy-dependent cutting results in terms of machined surface morphology and chip profile.Corresponding numerical simulations with the analysis of built stress further validate experimental results and reveal the mechanisms governing the material anisotropy influence.The above findings provide insight into the fabrication of ultra-smooth surfaces of polycrystalline metals by ultraprecision diamond turning.
基金the National Natural Science Foundation of China(Nos.51575389,51761135106)National Key Research and Development Program of China(2016YFB1102203)+1 种基金State key laboratory of precision measuring technology and instruments(Piltl705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.