期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identification and characterization of single crystal Bi_(2)Te_(3-x)Se_(x) alloy 被引量:1
1
作者 Emina POZEGA Svetlana IVANOV +4 位作者 zoran stevic Ljiljana KARANOVIC Rudolf TOMANEC Lidija GOMIDZELOVIC Ana KOSTOV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3279-3285,共7页
The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88... The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules. 展开更多
关键词 Bi_(2)Te_(3) Bi_(2)Te_(3-x)Se_(x) single crystal semiconductor thermoelectrical properties hardness thermovision imaging
下载PDF
Electrochemical Characteristics of Natural Mineral Covellite 被引量:2
2
作者 Mirjana Rajcic-Vujasinovic zoran stevic Sanja Bugarinovic 《Open Journal of Metal》 2012年第3期60-67,共8页
Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, as well as due to its potential application in solid state solar cells and in photocatalytic reactio... Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, as well as due to its potential application in solid state solar cells and in photocatalytic reactions. Also, the compound CuS appears as an intermediary product or a final product in electrochemical oxidation reactions of chalcocite (Cu2S) which exhibits supercapacitor characteristics. Natural copper mineral covellite has been investigated in inorganic sulfate acid electrolytes, as well as in strong alkaline electrolyte. Physical properties of covellite were characterized by X-ray diffraction (XRD) and the active surface was examined by optical and electron microscopy (EM) before and after oxidation in galvanostatic regime. Different electrochemical methods (galvanostatic, potentiostatic, cyclic voltammetry and electrochemical impedance spectroscopy - EIS) have been used. The capacitance of around 21 Fcm-2 (geometric area), serial resistance of about 90 Ωcm2 and leakage resistance of about 1200 Ωcm2 have been measured in 1 M H2SO4. The addition of cupric ions in sulfate electrolyte leads to the significant increasing of the capacitance, but having the increase of self-discharge as a negative side phenomenon. The capacitance of around 6.7 Fcm-2 (geometric area), serial resistance of about 80 Ωcm2 and leakage resistance of about 380 Ωcm2 have been measured in 6 M KOH. 展开更多
关键词 COVELLITE CAPACITANCE Copper Sulfides Electrochemical Characterization Solar Cells
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部