Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re...Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re-watering cycles on benthic macroinvertebrate (BMI) communities. Two data collections were carried out at two stations (Okpara 1 and Okpara 2) on the Okpara river before and after dewatering. Thus, 8 samples of benthic macroinvertebrates and 12 physico-chemical parameters (T°C, pH, Transparency, Depth, Conductivity, Dissolved Oxygen that were measured in situ, and BOD5, COD, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup>) were assayed in the laboratory. Canonical Correspondence Analysis (CCA) was used to match physico-chemical data to MIB families. Shannon and Piélou diversity indices were used to determine the effects of dewatering on MIBs. The increase in temperature values of pH, BOD5, COD, NH4</sub>+</sup>, NO3</sub>-</sup>, NO2</sub>-</sup> and PO4</sub>3-</sup>, after re-watering indicates the effect of dewatering on the quality of Okpara aquatic ecosystems. The benthic macrofauna collected consisted of 62.42% insects, 0.65% crustaceans, 6.48% molluscs, 0.72% worms and 0.14% arachnids. Whereas after re-watering, 21.67% insects, 0% crustaceans, 0.22% molluscs, 7.56% worms and 0.29% arachnids were recorded. Insects, crustaceans and molluscs were more abundant before dewatering than after. This was revealed by low abundances and taxonomic richness, as well as low Shannon index values of samples collected after re-watering.展开更多
Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific samp...Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.展开更多
This study focuses on the biodiversity of macroinvertebrates of the Affon River. To reach this goal, eight stations were sampled and physical parameters such as temperature, pH, conductivity, transparency, depth, tota...This study focuses on the biodiversity of macroinvertebrates of the Affon River. To reach this goal, eight stations were sampled and physical parameters such as temperature, pH, conductivity, transparency, depth, total dissolved solids (TDS) and dissolved oxygen were measured. Chemical parameters such as ammonium nitrite and phosphate were measured in the laboratory. We identified 9755 macroinvertebrates belonging to 4 classes, 14 orders, and 49 families. Chironomidae were the most abundant family whereas other sensitive insect’s orders such as Ephemeroptera, Trichoptera, and Plecoptera were rarely found, suggesting a poor water quality of the Affon River. The principal components analysis yielded three groups of stations: the first group (Tenéka 2 and 3) characterized by high values of ammonium and phosphate and low values of conductivity and TDS;the second group (Tanéka 1 and Kolokondé 1) with low values of pH, transparency, ammonium and phosphate;and the third group of stations (Kolokondé 2, Kpébouko1, Kpébouko 2, and Affon) marked by high values of conductivity, TDS, transparency, depth and temperature. This study is a crucial step for any management and monitoring of the Affon River.展开更多
The Affon River is one of the important rivers of the Ouémé River whose benthic diversity remained unknown. The present study aims to make the relationship between macroinvertebrates and physico-chemical par...The Affon River is one of the important rivers of the Ouémé River whose benthic diversity remained unknown. The present study aims to make the relationship between macroinvertebrates and physico-chemical parameters to access water quality of the Affon River. The measurement of physico-chemical parameters (temperature, pH, conductivity, transparency, depth and TDS, dissolved oxygen, ammonium, nitrite and phosphate) and the sampling of macroinvertebrates using a Surber net were carried out during floods in eight stations. A principal component analysis (PCA) and canonical correspondence analysis (CCA) were used. The indices of Shannon, Piélou, Simpson, Hilsenhoff, EPT and EPT/Chironomidae were used to assess the level of water pollution. The study identified 9755 macroinvertebrates divided into 4 classes, 14 orders and 49 families. Pollution-sensitive families (14 families) that are organic pollution indicators, as well as pollution-tolerant families (Chironomidae, Limnaeidae, Bithynidae, Physidae) were captured. Chironomidae were the most predominant and abundant family (FO = 100%). The predominance of Chironomidae coupled with the rarity of the Ephemeroptera, Trichoptera and Plecoptera would reflect the poor quality of the Affon River waters. The principal components analysis yielded groups of associations: The first group of stations Taneka 2 and 3 characterized by high values of ammonium and phosphate;and low values of conductivity and TDS;the second group of Tanéka 1 and Kolokondé 1 stations with low values of pH, transparency, ammonium and phosphates;and the third group of stations Kolokondé 2, Kpébouko1, Kpébouko 2 and Affon marked by high values of conductivity, TDS, transparency, depth and temperature. The canonical correspondence analysis revealed a strong positive correlation between Nemouridae and ammonium as well as between Perlidae, Taeniopterygidae, Ephemeridae, Heptageniidae, Isonychiidae, Elmidae and phosphate. This study is a crucial step for any management and monitoring of this river.展开更多
文摘Surface watercourses are areas of very high ecological and heritage value. Macroinvertebrates are bioindicators of the health of aquatic ecosystems. The aim of this study was to assess the effects of dewatering and re-watering cycles on benthic macroinvertebrate (BMI) communities. Two data collections were carried out at two stations (Okpara 1 and Okpara 2) on the Okpara river before and after dewatering. Thus, 8 samples of benthic macroinvertebrates and 12 physico-chemical parameters (T°C, pH, Transparency, Depth, Conductivity, Dissolved Oxygen that were measured in situ, and BOD5, COD, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup>) were assayed in the laboratory. Canonical Correspondence Analysis (CCA) was used to match physico-chemical data to MIB families. Shannon and Piélou diversity indices were used to determine the effects of dewatering on MIBs. The increase in temperature values of pH, BOD5, COD, NH4</sub>+</sup>, NO3</sub>-</sup>, NO2</sub>-</sup> and PO4</sub>3-</sup>, after re-watering indicates the effect of dewatering on the quality of Okpara aquatic ecosystems. The benthic macrofauna collected consisted of 62.42% insects, 0.65% crustaceans, 6.48% molluscs, 0.72% worms and 0.14% arachnids. Whereas after re-watering, 21.67% insects, 0% crustaceans, 0.22% molluscs, 7.56% worms and 0.29% arachnids were recorded. Insects, crustaceans and molluscs were more abundant before dewatering than after. This was revealed by low abundances and taxonomic richness, as well as low Shannon index values of samples collected after re-watering.
文摘Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.
文摘This study focuses on the biodiversity of macroinvertebrates of the Affon River. To reach this goal, eight stations were sampled and physical parameters such as temperature, pH, conductivity, transparency, depth, total dissolved solids (TDS) and dissolved oxygen were measured. Chemical parameters such as ammonium nitrite and phosphate were measured in the laboratory. We identified 9755 macroinvertebrates belonging to 4 classes, 14 orders, and 49 families. Chironomidae were the most abundant family whereas other sensitive insect’s orders such as Ephemeroptera, Trichoptera, and Plecoptera were rarely found, suggesting a poor water quality of the Affon River. The principal components analysis yielded three groups of stations: the first group (Tenéka 2 and 3) characterized by high values of ammonium and phosphate and low values of conductivity and TDS;the second group (Tanéka 1 and Kolokondé 1) with low values of pH, transparency, ammonium and phosphate;and the third group of stations (Kolokondé 2, Kpébouko1, Kpébouko 2, and Affon) marked by high values of conductivity, TDS, transparency, depth and temperature. This study is a crucial step for any management and monitoring of the Affon River.
文摘The Affon River is one of the important rivers of the Ouémé River whose benthic diversity remained unknown. The present study aims to make the relationship between macroinvertebrates and physico-chemical parameters to access water quality of the Affon River. The measurement of physico-chemical parameters (temperature, pH, conductivity, transparency, depth and TDS, dissolved oxygen, ammonium, nitrite and phosphate) and the sampling of macroinvertebrates using a Surber net were carried out during floods in eight stations. A principal component analysis (PCA) and canonical correspondence analysis (CCA) were used. The indices of Shannon, Piélou, Simpson, Hilsenhoff, EPT and EPT/Chironomidae were used to assess the level of water pollution. The study identified 9755 macroinvertebrates divided into 4 classes, 14 orders and 49 families. Pollution-sensitive families (14 families) that are organic pollution indicators, as well as pollution-tolerant families (Chironomidae, Limnaeidae, Bithynidae, Physidae) were captured. Chironomidae were the most predominant and abundant family (FO = 100%). The predominance of Chironomidae coupled with the rarity of the Ephemeroptera, Trichoptera and Plecoptera would reflect the poor quality of the Affon River waters. The principal components analysis yielded groups of associations: The first group of stations Taneka 2 and 3 characterized by high values of ammonium and phosphate;and low values of conductivity and TDS;the second group of Tanéka 1 and Kolokondé 1 stations with low values of pH, transparency, ammonium and phosphates;and the third group of stations Kolokondé 2, Kpébouko1, Kpébouko 2 and Affon marked by high values of conductivity, TDS, transparency, depth and temperature. The canonical correspondence analysis revealed a strong positive correlation between Nemouridae and ammonium as well as between Perlidae, Taeniopterygidae, Ephemeridae, Heptageniidae, Isonychiidae, Elmidae and phosphate. This study is a crucial step for any management and monitoring of this river.