As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming cle...As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming clearer that underlying vascular pathology such as cerebral small vessel disease(cSVD)may be a more detrimental cause for dementia(Cuadrado-Godia et al.,2018).It is estimated that 10%-30%of the elderly population and 35%-90%of all dementia patients exhibit signs of cSVD.The term cSVD refers to pathology affecting the small vessels of the brain,which can lead to lacunar cerebral infarcts,enlarged perivascular spaces,and cortical hemorrhages(Cuadrado-Godia et al.,2018).CSVD is often associated with cognitive decline,gait problems,and dementia(Cuadrado-Godia et al.,2018).展开更多
Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours....Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.展开更多
The scarring response after a penetrant central nervous system injury results from the interaction between invading leptominingeal/pericyte-derived fibroblasts and endogenous reactive astrocytes about the wound margin...The scarring response after a penetrant central nervous system injury results from the interaction between invading leptominingeal/pericyte-derived fibroblasts and endogenous reactive astrocytes about the wound margin. Extracellular matrix and scar-derived axon growth inhibitory mole- cules fill the lesion site providing both a physical and chemical barrier to regenerating axons. Dec orin, a small leucine-rich chondroitin-dermatan sulphate proteoglycan expressed by neurons and astrocytes in the central nervous system, is both anti-fibrotic and anti-inflammatory and attenu- ates the formation and partial dissolution of established and chronic scars. Here, we discuss the potential of using Decorin to antagonise scarring in the central nervous system.展开更多
Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since ...Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a Rho A dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1(LINGO-1) disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3(AMIGO3), exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.展开更多
In this perspective,we discuss the use of an anti-fibrotic agent Decorin to treat established fibrosis associated with glaucoma originally published by Hill et al.(2015).Glaucoma describes a group of progressive opt...In this perspective,we discuss the use of an anti-fibrotic agent Decorin to treat established fibrosis associated with glaucoma originally published by Hill et al.(2015).Glaucoma describes a group of progressive optic neuropathies that have the potential to cause irreversible blindness.展开更多
At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal ...At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal cord injury,howeve r,translation into the clinical space was plagued by early designs of matrix metalloprotease inhibitors that lacked specificity and fears of musculos keletal syndrome prevented their further development.Newe r,much more specific matrix metalloprotease inhibitors have revived the possibility of using these inhibitors in the clinic since they are much more specific to their to rget matrix metalloproteases.Here,the evidence for use of matrix metalloproteases after spinal cord injury is reviewed and researche rs are urged to overcome their old fears rega rding matrix metalloprotease inhibition and possible side effects for the field to progress.Recently published work by us shows that inhibition of specific matrix metalloproteases after spinal cord injury holds promise since four key consequences of spinal cord injury could be alleviated by specific,next-gene ration matrix metalloprotease inhibitors.For example,specific inhibition of matrix metalloprotease-9 and matrix metalloprotease-12 within 24 hours after injury and for 3 days,alleviates spinal cord injury-induced edema,blood-s pinal co rd barrier breakdown,neuro pathic pain and resto res sensory and locomotor function.Attempts are now underway to translate this therapy into the clinic.展开更多
The present study deals with the depositional facies, diagenetic processes and sequence stratigraphy of the shallow marine carbonates of the Samana Suk Formation, Kohat Basin, in order to elucidate its reservoir quali...The present study deals with the depositional facies, diagenetic processes and sequence stratigraphy of the shallow marine carbonates of the Samana Suk Formation, Kohat Basin, in order to elucidate its reservoir quality. The Samana Suk Formation consists of thin to thick-bedded, oolitic, bioclastic, dolomitic and fractured limestone. Based on the integration of outcrop, petrographic and biofacies analyses, the unit is thought to have been deposited on a gentle homoclinal ramp in peritidal, lagoonal and carbonate shoal settings. Frequent variations in microfacies based sea-level curve have revealed seven Transgressive Systems Tracts(TSTs) and six Regressive Systems Tracts(RSTs). The unit has undergone various stages of diagenetic processes, including mechanical and chemical compaction, cementation,micritization, dissolution and dolomitization. The petrographic analyses show the evolution of porosity in various depositional and diagenetic phases. The fenestral porosity was mainly developed in peritidal carbonates during deposition,while the burial dissolution and diagenetic dolomitization have greatly enhanced the reservoir potential of the rock unit, as is further confirmed by the plug porosity and permeability analyses. The porosities and permeabilities were higher in shoal facies deposited in TSTs, as compared to lagoonal and peritidal facies, except for the dolomite in mudstone, deposited during RSTs. Hence good, moderate and poor reservoir potential is suggested for shoal, lagoonal and peritidal facies,respectively.展开更多
This article reviews the role of cannabinoids in inhibiting neurodegeneration in models of multiple sclerosis(MS). MS is a chronic, debilitating disease of the central nervous system(CNS), induced by autoimmunity-driv...This article reviews the role of cannabinoids in inhibiting neurodegeneration in models of multiple sclerosis(MS). MS is a chronic, debilitating disease of the central nervous system(CNS), induced by autoimmunity-driven inflammation that leads to demyelination and thus disconnection of the normal transmission of nerve impulses. Despite the use of an array of immune modulating drugs that restore blood brain barrier function, disability continues in patients concomitant with the loss of axons in the spinal cord. MS patients therefore suffer neuropathic pain, spasticity and tremor. Anecdotal evidence suggests that MS patients using cannabis, though illegal, achieve symptomatic relief from neuropathic pain and spasticity associated with MS. The discovery of the endogenous cannabinoid(endocannabinoid) system that naturally exists in the body and which responds to cannabinoids to exert their effects has aided research into the therapeutic utility of cannabinoids. The endocannabinoid system consists of two G-protein coupled receptors cannabinoid receptor type-1(CB1) and CB2.CB1 is mainly expressed in the CNS and CB2 is predominantly found in leukocytes, while an increasing number of potential ligands and endocannabinoid degradation molecules are being isolated. Several studies have highlighted the involvement of this system in regulating neurotransmission and its ability to prevent excessive neurotransmitter release, consistent with a capacity to provide symptomatic relief. In summary, antagonism of the CB1 receptor pathway contributes to neuronal damage in chronic relapsing experimental allergic encephalomyelitis(EAE) and suppresses tremor and spasticity. The addition of exogenous CB1 agonists derived from cannabis also afforded significant neuroprotection from the consequences of inflammatory CNS disease in EAE and experimental allergic uveitis models. Although clear neuroprotective benefits of cannabinoids have been demonstrated, the unwanted psychotropic effects need to be addressed. However, manipulating the endogenous cannabinoid system may be one way of eliciting beneficial effects without some or all of the unwanted side effects.展开更多
Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effectiv...Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effective synthesis of transition-metal-doped zeolitic imidazolate framework-8(ZIF-8)and carbon nanotube(CNT)composite catalysts(ZIF-8@CNT)prepared via high-temperature pyrolysis at 900℃.The catalysts were characterized using different physicochemical techniques and employed as cathode materials in anion exchange membrane fuel cells(AEMFC).The prepared metal-free(ZNT-900),single-metal-doped(Fe-ZNT-900,Co-ZNT-900)and binary-metal-doped(Fe_(1)Co_(1)-ZNT-900,Fe_(1)Co_(2)-ZNT-900)catalysts had a sufficient amount of N-doping with the presence of FeCo moieties in the carbon skeleton of the latter two materials.N_(2) adsorption–desorption isotherms showed that all the prepared catalysts possess a sufficient Brunauer–Emmett–Teller surface area with more micropores present in ZNT-900,while a combined micro–mesoporous structure was obtained for transition-metal-doped catalysts.Binary-metal-doped catalysts showed the highest number of ORR-active sites(pyridinic-N,pyrrolic-N,graphitic-N,M–Nx)and exhibited a half-wave potential(E_(1/2))of 0.846 and 0.847 V vs.RHE for Fe_(1)Co_(1)-ZNT-900 and Fe_(1)Co_(2)-ZNT-900,respectively,which surpassed that of the commercial Pt/C catalyst(E_(1/2)=0.834 V).In H_(2)–O_(2) AEMFCs,the Fe_(1)Co_(2)-ZNT-900 catalyst delivered a maximum power density(P_(max))of 0.171 W cm^(-2) and current density at 0.5 V(j_(0.5))of 0.326 A cm^(-2),which is very close to that of the Pt/C catalyst(P_(max)=0.215 W cm^(-2) and j_(0.5)=0.359 A cm^(-2)).The prepared ZIF-8@CNT catalysts showed remarkable electrocatalytic ORR activity in 0.1 M KOH solution and fuel cell performance comparable to that of the benchmark Pt/C catalyst.展开更多
文摘As the population ages,the burden of age-related diseases becomes greater.Currently,over 55 million people suffer from dementia worldwide,with Alzheimer’s disease being the most common form.However,it is becoming clearer that underlying vascular pathology such as cerebral small vessel disease(cSVD)may be a more detrimental cause for dementia(Cuadrado-Godia et al.,2018).It is estimated that 10%-30%of the elderly population and 35%-90%of all dementia patients exhibit signs of cSVD.The term cSVD refers to pathology affecting the small vessels of the brain,which can lead to lacunar cerebral infarcts,enlarged perivascular spaces,and cortical hemorrhages(Cuadrado-Godia et al.,2018).CSVD is often associated with cognitive decline,gait problems,and dementia(Cuadrado-Godia et al.,2018).
基金Supported in part by National Natural Science Foundation of China(11401424)Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2019L0783)Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(2019KJ035)
基金Supported by the National Natural Science Foundation of China (11401424)the Natural Science Foundation of Shanxi Province (201901D211423)the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0783)。
文摘Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.
基金supported by the Wellcome Trust,grant No.092539/Z/10/Zthe International Spinal Research Trust,grant No.STR103funded by the National Institute for Health research (NIHR) Surgical Reconstruction and Microbiology Research Centre (partnership between University Hospitals Birmingham NHS Foundation Trust,the University of Birmingham and the Royal Centre for Defence Medicine)
文摘The scarring response after a penetrant central nervous system injury results from the interaction between invading leptominingeal/pericyte-derived fibroblasts and endogenous reactive astrocytes about the wound margin. Extracellular matrix and scar-derived axon growth inhibitory mole- cules fill the lesion site providing both a physical and chemical barrier to regenerating axons. Dec orin, a small leucine-rich chondroitin-dermatan sulphate proteoglycan expressed by neurons and astrocytes in the central nervous system, is both anti-fibrotic and anti-inflammatory and attenu- ates the formation and partial dissolution of established and chronic scars. Here, we discuss the potential of using Decorin to antagonise scarring in the central nervous system.
基金supported by a grant from The University of Birmingham
文摘Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a Rho A dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1(LINGO-1) disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3(AMIGO3), exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.
基金funded by the Biotechnology and Biological Sciences Research Council(BBSRC),No.BB/F017553/1
文摘In this perspective,we discuss the use of an anti-fibrotic agent Decorin to treat established fibrosis associated with glaucoma originally published by Hill et al.(2015).Glaucoma describes a group of progressive optic neuropathies that have the potential to cause irreversible blindness.
文摘At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal cord injury,howeve r,translation into the clinical space was plagued by early designs of matrix metalloprotease inhibitors that lacked specificity and fears of musculos keletal syndrome prevented their further development.Newe r,much more specific matrix metalloprotease inhibitors have revived the possibility of using these inhibitors in the clinic since they are much more specific to their to rget matrix metalloproteases.Here,the evidence for use of matrix metalloproteases after spinal cord injury is reviewed and researche rs are urged to overcome their old fears rega rding matrix metalloprotease inhibition and possible side effects for the field to progress.Recently published work by us shows that inhibition of specific matrix metalloproteases after spinal cord injury holds promise since four key consequences of spinal cord injury could be alleviated by specific,next-gene ration matrix metalloprotease inhibitors.For example,specific inhibition of matrix metalloprotease-9 and matrix metalloprotease-12 within 24 hours after injury and for 3 days,alleviates spinal cord injury-induced edema,blood-s pinal co rd barrier breakdown,neuro pathic pain and resto res sensory and locomotor function.Attempts are now underway to translate this therapy into the clinic.
文摘The present study deals with the depositional facies, diagenetic processes and sequence stratigraphy of the shallow marine carbonates of the Samana Suk Formation, Kohat Basin, in order to elucidate its reservoir quality. The Samana Suk Formation consists of thin to thick-bedded, oolitic, bioclastic, dolomitic and fractured limestone. Based on the integration of outcrop, petrographic and biofacies analyses, the unit is thought to have been deposited on a gentle homoclinal ramp in peritidal, lagoonal and carbonate shoal settings. Frequent variations in microfacies based sea-level curve have revealed seven Transgressive Systems Tracts(TSTs) and six Regressive Systems Tracts(RSTs). The unit has undergone various stages of diagenetic processes, including mechanical and chemical compaction, cementation,micritization, dissolution and dolomitization. The petrographic analyses show the evolution of porosity in various depositional and diagenetic phases. The fenestral porosity was mainly developed in peritidal carbonates during deposition,while the burial dissolution and diagenetic dolomitization have greatly enhanced the reservoir potential of the rock unit, as is further confirmed by the plug porosity and permeability analyses. The porosities and permeabilities were higher in shoal facies deposited in TSTs, as compared to lagoonal and peritidal facies, except for the dolomite in mudstone, deposited during RSTs. Hence good, moderate and poor reservoir potential is suggested for shoal, lagoonal and peritidal facies,respectively.
文摘This article reviews the role of cannabinoids in inhibiting neurodegeneration in models of multiple sclerosis(MS). MS is a chronic, debilitating disease of the central nervous system(CNS), induced by autoimmunity-driven inflammation that leads to demyelination and thus disconnection of the normal transmission of nerve impulses. Despite the use of an array of immune modulating drugs that restore blood brain barrier function, disability continues in patients concomitant with the loss of axons in the spinal cord. MS patients therefore suffer neuropathic pain, spasticity and tremor. Anecdotal evidence suggests that MS patients using cannabis, though illegal, achieve symptomatic relief from neuropathic pain and spasticity associated with MS. The discovery of the endogenous cannabinoid(endocannabinoid) system that naturally exists in the body and which responds to cannabinoids to exert their effects has aided research into the therapeutic utility of cannabinoids. The endocannabinoid system consists of two G-protein coupled receptors cannabinoid receptor type-1(CB1) and CB2.CB1 is mainly expressed in the CNS and CB2 is predominantly found in leukocytes, while an increasing number of potential ligands and endocannabinoid degradation molecules are being isolated. Several studies have highlighted the involvement of this system in regulating neurotransmission and its ability to prevent excessive neurotransmitter release, consistent with a capacity to provide symptomatic relief. In summary, antagonism of the CB1 receptor pathway contributes to neuronal damage in chronic relapsing experimental allergic encephalomyelitis(EAE) and suppresses tremor and spasticity. The addition of exogenous CB1 agonists derived from cannabis also afforded significant neuroprotection from the consequences of inflammatory CNS disease in EAE and experimental allergic uveitis models. Although clear neuroprotective benefits of cannabinoids have been demonstrated, the unwanted psychotropic effects need to be addressed. However, manipulating the endogenous cannabinoid system may be one way of eliciting beneficial effects without some or all of the unwanted side effects.
基金The present work was financially supported by the Estonian Research Council(grants PRG723,PRG4 and PRG1509).
文摘Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effective synthesis of transition-metal-doped zeolitic imidazolate framework-8(ZIF-8)and carbon nanotube(CNT)composite catalysts(ZIF-8@CNT)prepared via high-temperature pyrolysis at 900℃.The catalysts were characterized using different physicochemical techniques and employed as cathode materials in anion exchange membrane fuel cells(AEMFC).The prepared metal-free(ZNT-900),single-metal-doped(Fe-ZNT-900,Co-ZNT-900)and binary-metal-doped(Fe_(1)Co_(1)-ZNT-900,Fe_(1)Co_(2)-ZNT-900)catalysts had a sufficient amount of N-doping with the presence of FeCo moieties in the carbon skeleton of the latter two materials.N_(2) adsorption–desorption isotherms showed that all the prepared catalysts possess a sufficient Brunauer–Emmett–Teller surface area with more micropores present in ZNT-900,while a combined micro–mesoporous structure was obtained for transition-metal-doped catalysts.Binary-metal-doped catalysts showed the highest number of ORR-active sites(pyridinic-N,pyrrolic-N,graphitic-N,M–Nx)and exhibited a half-wave potential(E_(1/2))of 0.846 and 0.847 V vs.RHE for Fe_(1)Co_(1)-ZNT-900 and Fe_(1)Co_(2)-ZNT-900,respectively,which surpassed that of the commercial Pt/C catalyst(E_(1/2)=0.834 V).In H_(2)–O_(2) AEMFCs,the Fe_(1)Co_(2)-ZNT-900 catalyst delivered a maximum power density(P_(max))of 0.171 W cm^(-2) and current density at 0.5 V(j_(0.5))of 0.326 A cm^(-2),which is very close to that of the Pt/C catalyst(P_(max)=0.215 W cm^(-2) and j_(0.5)=0.359 A cm^(-2)).The prepared ZIF-8@CNT catalysts showed remarkable electrocatalytic ORR activity in 0.1 M KOH solution and fuel cell performance comparable to that of the benchmark Pt/C catalyst.