期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
1
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang zunyi duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles 被引量:3
2
作者 zunyi duan Jun Yan +2 位作者 Ikjin Lee Jingyuan Wang Tao Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1084-1094,共11页
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re... Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries. 展开更多
关键词 Integrated OPTIMIZATION MAXIMUM FUNDAMENTAL frequency Composite FRAME structures Continuous fiber WINDING angle SEMI-ANALYTICAL sensitivity analysis
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
3
作者 Jun Yan zunyi duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle Structural compliance
下载PDF
Multi-Material and Multiscale Topology Design Optimization of Thermoelastic Lattice Structures 被引量:1
4
作者 Jun Yan Qianqian Sui +1 位作者 Zhirui Fan zunyi duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期967-986,共20页
This study establishes amultiscale andmulti-material topology optimization model for thermoelastic lattice structures(TLSs)consideringmechanical and thermal loading based on the ExtendedMultiscale Finite ElementMethod... This study establishes amultiscale andmulti-material topology optimization model for thermoelastic lattice structures(TLSs)consideringmechanical and thermal loading based on the ExtendedMultiscale Finite ElementMethod(EMsFEM).The corresponding multi-material and multiscale mathematical formulation have been established with minimizing strain energy and structural mass as the objective function and constraint,respectively.The Solid Isotropic Material with Penalization(SIMP)interpolation scheme has been adopted to realize micro-scale multi-material selection of truss microstructure.The modified volume preserving Heaviside function(VPHF)is utilized to obtain a clear 0/1 material of truss microstructure.Compared with the classic topology optimization of single-material TLSs,multi-material topology optimization can get a better structural design of the TLS.The effects of temperatures,size factor,and mass fraction on optimization results have been presented and discussed in the numerical examples. 展开更多
关键词 Multi-material design optimization thermoelastic lattice structure multiscale topology optimization mass constraint strain energy
下载PDF
Thermoelastic Structural Topology Optimization Based on Moving Morphable Components Framework 被引量:1
5
作者 Jun Yan Qi Xu +3 位作者 Zhirui Fan zunyi duan Hongze Du Dongling Geng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1179-1196,共18页
This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume const... This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume constraint.To explicitly express the configuration evolution in the structural topology optimization under combination of mechanical and thermal load conditions,the moving morphable components(MMC)framework is adopted.Based on the characteristics of the MMC framework,the number of design variables can be reduced substantially.Corresponding optimization formulation in the MMC topology optimization framework and numerical solution procedures are developed for several numerical examples.Different optimization results are obtained with structural compliance and elastic strain energy as objectives,respectively,for thermoelastic problems.The effectiveness of the proposed optimization formulation is validated by the numerical examples.It is revealed that for the optimization design of the thermoelastic structural strength,the objective function with the minimum structural strain energy can achieve a better performance than that from structural compliance design. 展开更多
关键词 Thermoelastic structure topology optimization moving morphable components minimum structural compliance minimum strain energy
下载PDF
Introduction to the Special Issue on Novel Methods of Topology Optimization and Engineering Applications
6
作者 Kai Long Xiaodong Huang +2 位作者 zunyi duan Xuan Wang Quhao Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期27-29,共3页
Topology optimization,aiming to allocate the available material to maximize system performance while satisfying multiple constraints,has experienced tremendous progress.This special issue focuses on the new progress o... Topology optimization,aiming to allocate the available material to maximize system performance while satisfying multiple constraints,has experienced tremendous progress.This special issue focuses on the new progress of topology optimization methods and their applications,especially theoretical development,numerical implementation and potential applications. 展开更多
关键词 OPTIMIZATION satisfying CONSTRAINTS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部