期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Precipitation Controls on Carbon Sinks in an Artificial Green Space in the Taklimakan Desert
1
作者 Yingwei SUN Fan YANG +9 位作者 Jianping HUANG Xinqian ZHENG Ali MAMTIMIN Chenglong ZHOU Silalan ABUDUKADE Jiacheng GAO chaofan li Mingjie MA Wen HUO Xinghua YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第12期2300-2312,共13页
Control of desertification can not only ameliorate the natural environment of arid regions but also convert desertified land into significant terrestrial carbon sinks,thereby bolstering the carbon sequestration capaci... Control of desertification can not only ameliorate the natural environment of arid regions but also convert desertified land into significant terrestrial carbon sinks,thereby bolstering the carbon sequestration capacity of arid ecosystems.However,longstanding neglect of the potential carbon sink benefits of desertification management,and its relationship with environmental factors,has limited the exploration of carbon sequestration potential.Based on CO_(2) flux and environmental factors of artificial protective forest in the Taklamakan Desert from 2018 to 2019,we found that the carbon storage capacity of the desert ecosystem increased approximately 140-fold after the establishment of an artificial shelter forest in the desert,due to plant photosynthesis.Precipitation levels less than 2 mm had no impact on carbon exchange in the artificial shelter forest,whereas a precipitation level of approximately 4 mm stimulated a decrease in the vapor pressure deficit over a short period of about three days,promoting photosynthesis and enhancing the carbon absorption of the artificial shelter forest.Precipitation events greater than 8 mm stimulated soil respiration to release CO_(2) and promoted plant photosynthesis.In the dynamic equilibrium where precipitation stimulates both soil respiration and photosynthesis,there is a significant threshold value of soil moisture at 5 cm(0.12 m^(3) m^(-3)),which can serve as a good indicator of the strength of the stimulatory effect of precipitation on both.These results provide important data support for quantifying the contribution of artificial afforestation to carbon sequestration in arid areas,and provide guidance for the development and implementation of artificial forest management measures. 展开更多
关键词 Taklimakan Desert artificial shelter forest carbon sequestration capacity CO_(2)flux PRECIPITATION
下载PDF
Insights from the Second Tibetan Plateau Scientific Expedition: Unveiling the westerly–monsoon synergy and hydroclimate changes
2
作者 chaofan li Yaoming Ma +1 位作者 Tianjun Zhou Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期1-2,共2页
The Tibetan Plateau(TP),often referred to as the“Asian Water Tower”,holds vast reserves of glaciers,snow,and permafrost,serving as the crucial source for major rivers that support billions of people across Asia.The... The Tibetan Plateau(TP),often referred to as the“Asian Water Tower”,holds vast reserves of glaciers,snow,and permafrost,serving as the crucial source for major rivers that support billions of people across Asia.The TP’s unique geographical positioning fosters significant interplay between the westerly and monsoon systems,the hydroclimate changes on the TP and its interactions with these two major atmospheric circulation systems through both the thermodynamic and dynamic processes,as well as the atmospheric water cycle of the TP.These interactions have far-reaching impacts on the weather and climate of China,Asia,and even the global atmospheric circulation. 展开更多
关键词 TIBETAN Plateau holds
下载PDF
A spatial-explicit dynamic vegetation model that couples carbon,water,and nitrogen processes for arid and semiarid ecosystems 被引量:8
3
作者 Chi ZHANG chaofan li +5 位作者 Xi CHEN GePing LUO LongHui li XiaoYu li Yan YAN Hua SHAO 《Journal of Arid Land》 SCIE CSCD 2013年第1期102-117,共16页
Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and ... Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations. 展开更多
关键词 process-based model arid ecosystem C cycle vegetation dynamics
下载PDF
Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains 被引量:5
4
作者 QiFei HAN GePing LUO +2 位作者 chaofan li Hui YE Yaoliang CHEN 《Journal of Arid Land》 SCIE CSCD 2013年第3期354-365,共12页
Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-c... Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity. 展开更多
关键词 elevational gradient net primary production water-use efficiency CLIMATE
下载PDF
Why Was the Strengthening of Rainfall in Summer over the Yangtze River Valley in 2016 Less Pronounced than that in 1998 under Similar Preceding El Nino Events?Role of Midlatitude Circulation in August 被引量:13
5
作者 chaofan li wei chen +1 位作者 xiaowei hong riyu lu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第11期1290-1300,共11页
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998.... It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 E1 Nifio having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016--different to the positive anomaly of 1998. 展开更多
关键词 Yangtze River valley summer rainfall super El Nio sub-seasonal variation Silk Road Pattern
下载PDF
Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023? 被引量:2
6
作者 Fei ZHENG Shuai HU +17 位作者 Jiehua MA lin WANG Kexin li Bo WU Qing BAO Jingbei PENG chaofan li Haifeng ZONG Yao YAO Baoqiang TIAN Hong CHEN Xianmei LANG Fangxing FAN Xiao DONG Yanling ZHAN Tao ZHU Tianjun ZHOU Jiang ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期581-586,共6页
In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th... In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction. 展开更多
关键词 winter climate El Niño seasonal forecast GMST
下载PDF
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 被引量:1
7
作者 Ying Na chaofan li Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期16-21,共6页
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m... The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region. 展开更多
关键词 Isolated deep convection Tibetan plateau Climatological characteristics Precipitation contribution Extreme precipitation
下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
8
作者 Jinglong Huang chaofan li +2 位作者 Binghao Jia Chujie Gao Ruichao li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness PERMAFROST Tibetan plateau Climatological characteristics
下载PDF
环氧度对异戊橡胶/环氧化杜仲胶并用胶性能的影响 被引量:3
9
作者 李超凡 杨凤 +1 位作者 李龙 方庆红 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2022年第5期50-57,共8页
制备了一系列环氧度的环氧化杜仲胶(EEUG)并用于改性异戊橡胶(IR),采用不含补强填料的胶料配方进行硫化。重点研究了环氧度对IR/EEUG并用胶的硫化特性、结晶结构以及静态和动态力学性能的影响。利用差示扫描量热法、偏光显微镜和原子力... 制备了一系列环氧度的环氧化杜仲胶(EEUG)并用于改性异戊橡胶(IR),采用不含补强填料的胶料配方进行硫化。重点研究了环氧度对IR/EEUG并用胶的硫化特性、结晶结构以及静态和动态力学性能的影响。利用差示扫描量热法、偏光显微镜和原子力显微镜分析了EEUG的聚集态结构和IR/EEUG的结晶结构和相结构。结果表明,EEUG由结晶结构转变为无定形结构的临界环氧度为21.0%(摩尔分数)。环氧度为14.3%、EEUG用量为10 phr的硫化胶90IR/10EEUG-14.3中可见少量微小晶体,且随着EEUG-14.3用量增加,IR/EEUG硫化胶的拉伸强度和断裂伸长率下降。随EEUG环氧度增加,90IR/10EEUG硫化胶的拉伸强度和断裂伸长率同时增加,90IR/10EEUG-21.0拉伸性能最佳。EEUG-21.0处于结晶结构向无定形结构转变的临界状态,容易发生应变诱导结晶,甚至通过EEUG与IR分子间相互作用引发IR应变诱导结晶。EEUG的存在提高了IR硫化胶0℃时的tanδ值、降低了60℃时的tanδ值,说明适宜环氧度的EEUG可同时改善IR的抗湿滑性和滚动阻力。 展开更多
关键词 异戊橡胶 杜仲胶 环氧化改性 聚集态结构 滚动阻力 抗湿滑性
下载PDF
The Seasonal Prediction of the Exceptional Yangtze River Rainfall in Summer 2020 被引量:8
10
作者 chaofan li Riyu LU +3 位作者 Nick DUNSTONE Adam ASCAIFE Philip EBETT Fei ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2055-2066,共12页
During June and July of 2020,the Yangtze River basin suffered from extreme mei-yu rainfall and catastrophic flooding.This study explores the seasonal predictability and associated dynamical causes for this extreme Yan... During June and July of 2020,the Yangtze River basin suffered from extreme mei-yu rainfall and catastrophic flooding.This study explores the seasonal predictability and associated dynamical causes for this extreme Yangtze River rainfall event,based on forecasts from the Met Office GloSea5 operational forecast system.The forecasts successfully predicted above-average rainfall over the Yangtze River basin,which arose from the successful reproduction of the anomalous western North Pacific subtropical high(WNPSH).Our results indicate that both the Indian Ocean warm sea surface temperature(SST)and local WNP SST gradient were responsible for the westward extension of the WNPSH,and the forecasts captured these tropical signals well.We explore extratropical drivers but find a large model spread among the forecast members regarding the meridional displacements of the East Asian mid-latitude westerly jet(EAJ).The forecast members with an evident southward displacement of the EAJ favored more extreme Yangtze River rainfall.However,the forecast Yangtze River rainfall anomaly was weaker compared to that was observed and no member showed such strong rainfall.In observations,the EAJ displayed an evident acceleration in summer 2020,which could lead to a significant wind convergence in the lower troposphere around the Yangtze River basin,and favor more mei-yu rainfall.The model forecast failed to satisfactorily reproduce these processes.This difference implies that the observed enhancement of the EAJ intensity gave a large boost to the Yangtze River rainfall,hindering a better forecast of the intensity of the event and disaster mitigation. 展开更多
关键词 seasonal forecast Yangtze River rainfall western North Pacific subtropical high westerly jet
下载PDF
Meridional Displacement of the East Asian Upper-tropospheric Westerly Jet and Its Relationship with the East Asian Summer Rainfall in CMIP5 Simulations 被引量:4
11
作者 Yuhan YAN chaofan li Riyu LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1203-1216,共14页
As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the i... As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the interannual variation of the EAJ meridional displacement and its relationship with the East Asian summer rainfall are evaluated, using the historical simulations of CMIP5 (phase 5 of the Coupled Model Intercomparison Project). The models can generally reproduce the meridional displacement of the EAJ, which is mainly manifested as the first principal mode in most of the simulations. For the relationship between the meridional displacement of the EAJ and East Asian rainfall, almost all the models depict a weaker correlation than observations and exhibit considerably large spread across the models. It is found that the discrepancy in the interannual relationship is closely related to the simulation of the climate mean state, including the climatological location of the westerly jet in Eurasia and rainfall bias in South Asia and the western North Pacific. In addition, a close relationship between the simulation discrepancy and intensity of EAJ variability is also found: the models with a stronger intensity of the EAJ meridional displacement tend to reproduce a closer interannual relationship, and vice versa. 展开更多
关键词 EAST ASIAN WESTERLY jet MERIDIONAL TELECONNECTION EAST ASIAN rainband model simulation
下载PDF
Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall 被引量:4
12
作者 Philip E. BETT Adam A. SCAIFE +8 位作者 chaofan li Chris HEWITT Nicola GOLDING Peiqun ZHANG Nick DUNSTONE Doug M. SMITH Hazel E. THORNTON Riyu LU Hong-li REN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第8期22-30,共9页
The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage... The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage flood waters, and are important sources of electricity for the region. Being able to forecast high-impact events at long lead times therefore has enormous potential benefit. Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services. The teleconnection from E1 Nifio to Yangtze River basin rainfall meant that the strong E1 Nifio in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system. This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin, building on previous work demonstrating the retrospective skill of such a forecast. A simple forecasting methodology is presented, in which the forecast probabilities are derived from the historical relationship between hindcast and observations. Its performance for 2016 is discussed. The heavy rainfall in the May-June-July period was correctly forecast well in advance. August saw anomalously low rainfall, and the forecasts for the June-July-August period correctly showed closer to average levels. The forecasts contributed to the confidence of decision-makers across the Yangtze River basin. Trials of climate services such as this help to promote appropriate use of seasonal forecasts, and highlight areas for future improvements. 展开更多
关键词 seasonal forecasting flood forecasting Yangtze basin rainfall ENSO HYDROELECTRICITY
下载PDF
The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective:Current and Possible Future Prevalence 被引量:4
13
作者 Robin T.CLARK Peili WU +1 位作者 lixia ZHANG chaofan li 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2010-2022,I0002-I0008,共20页
Highly unusual amounts of rainfall were seen in the 2020 summer in many parts of China,Japan,and South Korea.At the intercontinental scale,case studies have attributed this exceptional event to a displacement of the c... Highly unusual amounts of rainfall were seen in the 2020 summer in many parts of China,Japan,and South Korea.At the intercontinental scale,case studies have attributed this exceptional event to a displacement of the climatological western North Pacific subtropical anticyclone,potentially associated Indian Ocean sea surface temperature patterns and a mid-latitude wave train emanating from the North Atlantic.Using clusters of spatial patterns of sea level pressure,we show that an unprecedented 80%of the 2020 summer days in East Asia were dominated by clusters of surface pressure greater than normal over the South China Sea.By examining the rainfall and water vapor fluxes in other years when these clusters were also prevalent,we find that the frequency of these types of clusters was likely to have been largely responsible for the unusual rainfall of 2020.From two ensembles of future climate projections,we show that summers like 2020 in East Asia may become more frequent and considerably wetter in a warmer world with an enhanced moisture supply. 展开更多
关键词 circulation clustering mei-yu front 2020 summer rainfall climate projections
下载PDF
Predictable and Unpredictable Components of the Summer East Asia–Pacific Teleconnection Pattern 被引量:2
14
作者 Xiaozhen liN chaofan li +1 位作者 Riyu LU Adam A.SCAIFE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第11期1372-1380,共9页
The East Asia–Pacific(EAP) teleconnection pattern is the dominant mode of circulation variability during boreal summer over the western North Pacific and East Asia, extending from the tropics to high latitudes. Howev... The East Asia–Pacific(EAP) teleconnection pattern is the dominant mode of circulation variability during boreal summer over the western North Pacific and East Asia, extending from the tropics to high latitudes. However, much of this pattern is absent in multi-model ensemble mean forecasts, characterized by very weak circulation anomalies in the mid and high latitudes. This study focuses on the absence of the EAP pattern in the extratropics, using state-of-the-art coupled seasonal forecast systems. The results indicate that the extratropical circulation is much less predictable, and lies in the large spread among different ensemble members, implying a large contribution from atmospheric internal variability. However,the tropical–mid-latitude teleconnections are also relatively weaker in models than observations, which also contributes to the failure of prediction of the extratropical circulation. Further results indicate that the extratropical EAP pattern varies closely with the anomalous surface temperatures in eastern Russia, which also show low predictability. This unpredictable circulation–surface temperature connection associated with the EAP pattern can also modulate the East Asian rainband. 展开更多
关键词 EAP pattern CIRCULATION SEASONAL forecast surface temperature eastern RUSSIA
下载PDF
Seasonal Rainfall Forecasts for the Yangtze River Basin in the Extreme Summer of 2020 被引量:2
15
作者 Philip E.BETT Gill M.MARTIN +3 位作者 Nick DUNSTONE Adam A.SCAIFE Hazel E.THORNTON chaofan li 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2212-2220,I0013,共9页
Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical pr... Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon(EASM)index,which is transformed into regional-mean rainfall through linear regression.The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation.The forecasts verify well in terms of giving strong,consistent predictions of above-average rainfall at lead times of at least three months.However,the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period,leading to observed values that lie outside the 95%prediction intervals of the three-month forecasts.The forecasts presented here are consistent with other studies of the 2020 EASM rainfall,whereby the enhanced mei-yu front in early summer is skillfully forecast,but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured.This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors. 展开更多
关键词 seasonal forecasting flood forecasting Yangtze basin rainfall East Asian Summer Monsoon
下载PDF
Skilful Forecasts of Summer Rainfall in the Yangtze River Basin from November 被引量:1
16
作者 Philip E.BETT Nick DUNSTONE +2 位作者 Nicola GOLDING Doug SMITH chaofan li 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期2082-2091,共10页
Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced m... Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation. 展开更多
关键词 seasonal forecasting interannual forecasting flood forecasting Yangtze basin rainfall East Asian summer monsoon
下载PDF
Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5 被引量:1
17
作者 chaofan li Riyu LU +2 位作者 Philip E. BETT Adam A. SCAIFE Nicola MARTIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第8期59-68,共10页
Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT ... Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations axe larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits. 展开更多
关键词 seasonal forecast western China surface air temperature PREDICTABILITY warming trend
下载PDF
Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer
18
作者 Mengyu DENG Riyu LU chaofan li 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期999-1011,共13页
Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall... Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall over these two regions are roughly independent,and they correspond to distinct anomalies of both large-scale circulation and sea surface temperature(SST).The enhanced extreme rainfall over western Sichuan is associated with a southward shift of the Asian westerly jet,while the enhanced extreme rainfall over eastern Sichuan is associated with an anticyclonic anomaly in the upper troposphere over China.At low levels,on the other hand,the enhanced extreme rainfall over western Sichuan is related to two components of wind anomalies,namely southwesterly over southwestern Sichuan and northeasterly over northeastern Sichuan,which favor more rainfall under the effects of the topography.Relatively speaking,the enhanced extreme rainfall over eastern Sichuan corresponds to the low-level southerly anomalies to the east of Sichuan,which curve into northeasterly anomalies over the basin when they encounter the mountains to the north of the basin.Therefore,it can be concluded that the topography in and around Sichuan plays a crucial role in inducing extreme rainfall both over western and eastern Sichuan.Finally,the enhanced extreme rainfall in western and eastern Sichuan is related to warmer SSTs in the Maritime Continent and cooler SSTs in the equatorial central Pacific,respectively. 展开更多
关键词 extreme rainfall SICHUAN interannual variation TOPOGRAPHY large-scale circulation
下载PDF
EOM-CCSD-Based Neural Network Diabatic Potential Energy Matrix for ^(1)πσ^(*)-Mediated Photodissociation of Thiophenol
19
作者 Siting Hou chaofan li +1 位作者 Huixian Han Changjian Xie 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期461-470,I0002,共11页
A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of th... A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of the PEM was specifically achieved by our recent method[Chin.J.Chem.Phys.34,825(2021)],which was based on adiabatic energies without the associated costly derivative couplings.The equation of motion coupled cluster with single and double excitations(EOM-CCSD)method was employed to compute adiabatic energies of two excited states in this work due to its high accuracy,simplicity,and efficiency.The PEM includes three dimensionalities,namely the S-H stretch,C-S-H bend,and C-C-S-H torsional coordinates.The root mean square errors of the NN fitting for the S1 and S2 states are 0.89 and 1.33 me V,respectively,suggesting the high accuracy of the NN method as expected.The calculated lifetimes of the S1 vibronic 00 and31 states are found to be in reasonably good agreement with available theoretical and experimental results,which validates the new EOM-CCSD-based PEM fitted by the NN approach.The combination of the diabatization scheme solely based on the adiabatic energies and the use of EOM-CCSD method makes the construction of reliable diabatic PEM quite simple and efficient. 展开更多
关键词 Neural network Diabatic potential energy matrix Photodissociation dynamics
下载PDF
Three-Dimensional Diabatic Potential Energy Surfaces of Thiophenol withNeural Networks
20
作者 chaofan li Siting Hou Changjian Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期825-832,I0003,共9页
Three-dimensional(3D)diabatic potential energy surfaces(PESs)of thiophenol involving the S0,and coupled 1ππ^(*) and 1πσ^(*) states were constructed by a neural network approach.Specifically,the diabatization of th... Three-dimensional(3D)diabatic potential energy surfaces(PESs)of thiophenol involving the S0,and coupled 1ππ^(*) and 1πσ^(*) states were constructed by a neural network approach.Specifically,the diabatization of the PESs for the 1ππ^(*) and 1πσ^(*) states was achieved by the fitting approach with neural networks,which was merely based on adiabatic energies but with the correct symmetry constraint on the off-diagonal term in the diabatic potential energy matrix.The root mean square errors(RMSEs)of the neural network fitting for all three states were found to be quite small(<4 meV),which suggests the high accuracy of the neural network method.The computed low-lying energy levels of the S_(0) state and lifetime of the 0^(0) state of S_(1) on the neural network PESs are found to be in good agreement with those from the earlier diabatic PESs,which validates the accuracy and reliability of the PESs fitted by the neural network approach. 展开更多
关键词 Diabatic potential energy surfaces Neural networks PHOTODISSOCIATION
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部